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Preface

The good thing about Statistics is that you meet the best people the world-
over.a

aW Edwards Deming; May 1975. Personal communication.

Figure 1: W Edwards Deming

Remark

In this as well as the following chapters, we will begin and end with a quote
from Dr. W Edwards Deming’s writings.1 It is hoped that these quotes will
serve as reflexions or messages that will help the reader, both at work and life
in general.

What is this all about?

The present manuscript was used as a basic instructional device for an intro-
duction on Probability Sampling . Other complementary material was offered to

1It was our good fortune and privilege to have being a disciple of Dr. Deming during our
graduate studies at Stern School of Business. Certainly, it is one of our greatest honors of
having the opportunity to study under a great human being. And that is why these notes are
dedicated to his memory.

vii
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the participants with the intended purpose that it would elaborate or clarify
some of the ideas presented in the manuscript. The R Program is used as a
supporting computing device for illustration of different sampling techniques
and procedures.

As for this manuscript, we present the following (non-exhaustive) topics:

• Chapter One introduces the basic concepts on Probability Sampling;

• Chapter Two presents Simple Random Sampling, which forms the basic
root for other sampling designs;

• Chapter Three covers both Systematic and Replicated Sampling method-
ologies;

• Chapter Four introduces Stratified Sampling design;

• Chapter Five covers some Clustered Sampling techniques;

• Chapter Six includes both Ratio and Regression Estimation with auxiliary
information;

• Chapter Seven introduces the survey package, to be used with R program.

Several exercises are included in order to reinforce the concepts introduced to
the reader.

We should notice that Probability Sampling has been one of the topics which we
previously taught in courses, both at the Institute of Statistics, Faculty of Busi-
ness Administration, Ŕıo Piedras Campus, and the Department of Biostatistics
and Epidemiology, School of Public Health, Medical Sciences Campus, of the
University of Puerto Rico.

Thanks

The author wants to recognize the support for this project, which include: Dr.
Mario Marazzi, Executive Director of the Puerto Rico Institute of Statistics, and
its staff, especially, Mr. Orville Disdier, Idania Rodŕıguez, Luz Mairym López,
Héctor López, Francisco Acevedo, and Yashira Guzmán. Thanks to all of them
for their dedication and collaboration with the first Academy on Sampling for
statistics-engaged government employees.

We also want to recognize the dedication and interest on Probability Sampling
that showed the following participants of the Academy: Gloria Rosado (Car-
olina Municipality), Carol Málaga (Turism Department), Aixa Dı́az (Puerto
Rico Special Communities Office), Alex López (Agriculture Department), Ida-
nia Rodŕıguez (Puerto Rico Institute of Statistics), Myriam Ramos (Department
of Health), and Rafael Silvestrini (Turism Department). Thanks to all for your
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patient and helpful suggestions on this manuscript. As always, we continue to
learn from our students.

Our colleagues, Professors Wilfredo Camacho and Jairo Fúquene, of the In-
stitute of Statistics, Faculty of Business Administration, of the University of
Puerto Rico, read part of the manuscript and also made valuable suggestions.
We appreciate their interest and help. Needless to say, but any errors, blemishes,
and blunders are the complete and exclusive responsibility of the author.

Finally, but importantly, many thanks to my wife Maritza, for her patient, sup-
port, and encouragement throughout this and other professional engagements.
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Chapter 1

Introduction to Sampling

Sampling is not mere substitution of a partial coverage for a total coverage.
Sampling is the science and art of controlling and measuring the reliability
of useful statistical information through the theory of probability.a

aW Edwards Deming; 1950, 1986. Some Theory of Sampling. New York: Wiley,
Dover. Page 2.

1.1 Basic Concepts

This is an introduction to probability sampling . With probability samples, we
can calculate sampling errors; we can also eliminate selection biases (via ran-
dom sampling) and non-response and estimation errors can be contained within
known limits. We will present some of the various survey sampling designs,
both in probability and non-probability sampling, including some of their ad-
vantages and disadvantages. Within probability sampling, we will cover the
basic concepts of: simple random sampling (the basis of other designs), system-
atic, replicated, stratified, and clustered sampling. And within non-probability
sampling, we will include subjective selection, quota, convenience, and snowball
sampling. We emphasize that our main focus will be on probability sampling
techniques.

We start describing some basic concepts in sampling:

Population — Formed by all elements or units of interest in a study, generally,
at a time point. A population is defined by the context of the study. It could be
made of people, but it could also be businesses, farms, schools, factory products,
animals, and so on.

Sampling frame — List of sampling units that gives access to the population
of interest. A frame could also be formed by maps, with explicit unit boundaries,
in an area study, as we will see later. The frame size is made of N sampling

1



2 CHAPTER 1. INTRODUCTION TO SAMPLING

units; {Ui = U1, U2, . . . , UN}. In these notes, we will assume that N is finite or
countable.

Sample — Part or fraction of a population selected from the frame. The sample
size is made of n ≤ N sampling units; {ui = u1, u2, . . . , un}.

Census — It refers to a survey where all elements or units of interest are
studied. Notice that a census is a special sample, where n = N .

Parameter — Suppose that we have a measure of interest in our study, Y , and
this measure have some characteristics which we would like to estimate. If we
examine the frame: {(Ui, Yi) = (U1, Y1), (U2, Y2), . . . , (UN , YN )}, a function of Yi
in the frame is known as a parameter. For example: mean, median, percentiles,
variance, standard deviation, and others.

1.1.1 Some Advantages Probability Sampling

Probability sampling provides measures of sampling errors with respect to the
estimates that come from the data and we can generalize the findings of a study,
based on an inference from the sample to the frame. Some of the advantages of
probability sampling are:

• It improves an statistical program by clarifying the objectives of the study;

• It provides a quantitative measure of the extent of variation due to random
effects (sampling error);

• It provides data of known quality, through statistical control procedures;

• It reduces the risk of non-response and the burden of response;

• It allows better interviewing or testing, better supervision, better data
processing than a complete enumeration survey (census);

• It provides data in timely fashion, as compared to a complete enumeration
survey;

• It provides acceptable data reliability at a reduced cost;

• Due to the smallness of the study, we obtain more control over non-
sampling errors, as compared to a complete enumeration survey;

• Statistical inference and probability theory can be applied to analyze and
interpret the data.
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1.1.2 Some Limitations of Probability Sampling

Probability sampling involves several risks and limitations. In fact, because we
are not studying the complete frame, we will always have a risk of sampling
errors. Some of the limitations of probability sampling include:

• It depends on the “goodness” of the sampling frame (although this is also
a limitation in complete enumeration studies);

• Because we are examining a portion of the frame, sampling does no give
specific information on every sampling unit (people, account, inventory,
patients, . . . );

• Sampling errors are inherent in a probability sample, and can be large for
some aims of a study;

• In small areas or rare sub-populattions, sampling errors may be high;

• Representativeness of the frame (or population) may be questionable or
controversial.

1.1.3 Questions to Consider

In any study, either from a sampling design or from a complete enumeration
survey, there will be several questions that need to be answered. Some of these
questions are:

• What is your main research question? (study purpose);

• What is your population of interest? (target population);

• What do you know about this population? (previous study);

• Do you have a sampling frame? (access to the population);

• How good is the sampling frame? (appropriateness);

• Do you have an existing questionnaire? (data gathering instrument);

• When do you need your data and analysis? (time frame);

• How much money do you have? (cost of the study).
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1.2 Common Descriptive Measures

Definition 1: Mean.
The parameter known as mean is the sum of all the Y values in a
frame, divided by N . The mean of a whole frame is usually denoted
by µy, while the mean of a sample is usually denoted by ȳ. (Note
that this is the arithmetic mean; there are other means, which will
be discussed later.)

Thus, the mean of measur Y in the frame is given by

µy ≡
Y1 + Y2 + · · ·+ YN

N
(1.1)

Definition 2: Median.
The median is the middle number of a set of Y values, arranged in
numerical order. If the number of values in a set is even, then the
median is the midpoint of the two central values.

The median is not affected by the magnitude of the extreme (smallest or largest)
Y values. Thus, it is useful because it is not affected by one or two abnormally
small or large values, and because it is very simple to calculate.

Unlike the median, the mean is sensitive to any change Y values, while a change
to an extreme value (in the case of a median) usually has no effect.

Definition 3: Variance.
This is a measure of how items are dispersed about their mean. The
variance, σ2

y, of a frame is given by the equation

σ2
y ≡

∑N
i=1(yi − µy)2

N
(1.2)

The variance, s2
y, of a sample is usually calculated as:

s2
y ≡

∑n
i=1(yi − ȳ)2

n− 1
(1.3)

Definition 4: Standard Deviation.
The standard deviation, σy (or sy for a sample), is the positive square
root of the variance.

Definition 5: Relative Variability.
The relative variability, also known as the coefficient of variation, of
a frame is its standard deviation divided by its mean.

CVy ≡
σy
µy

(1.4)

The relative variability is useful for comparing several groups.
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1.3 Random Sampling

Assume that the sampling frame hasN = 1, 000 units, {Ui = 001, 002, . . . , 1000},
and we want to select a sample of n = 10 units, {ui = u1, u2, . . . , u10}, by means
of a random procedure. The sample will be selected1 using the following scheme:

1. The sampling selection is without replacement.

2. Each unit in the sampled frame has the same probability, 10
1000 , of entering

the sample.

3. The sample is chosen by a process of automatic randomization.

Just imagine an urn with 1, 000 numbered chips, {001, 002, . . . , 1000}, and sup-
pose that 10 randomly selected chips, without replacement, are numbered:

{204, 436, 714, 917, 873, 770, 398, 187, 778, 732}.

Then, these constitute our selected sampling units for subsequent investigation
and statistical analysis.

If the sampling procedure were with replacement, we would obtain a sample
where any of the N = 1, 000 units could appear more than once.

Random sampling selection will be contrasted with non-random sampling, in
which generally, selection is made by judgement, where the intent is to get a
“representative” sample based on subject-matter expertise. Latter on, we will
mention several non-random sampling procedures.

1.4 Sampling Errors

Because of the fact that we are examining n < N sampling units, there will
be un-certentainty with respect to the measures based on said sample values.
Furthermore, if random selection is repeated using the same sampling procedure,
we will obtain samples that differ with respect to the selected units.

Suppose that θ is a general parameter of interest, and it is estimated using an
estimator θ̂. Generally, in repeated sampling, from the same frame and using the
same sampling procedure, θ̂ differs from sample to sample. Assume that from
the ith selected sample, you get an estimate θ̂i of θ. The difference, δi ≡ θ̂i−θ is
known as an estimation error ; notice that δi could be either positive, negative
or zero.

1Cf. WG Cochran, F Mosteller & JW Tukey; 1954. Statistical Problems of the Kinsey
Report. Washington, DC: American Statistical Association.
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Definition 6: Expected Value.
Suppose that θ̂ could have D different values. The mean or expected
value of θ̂ is,

E(θ̂i) ≡
D∑
1

θ̂i Pr(θ̂i), (1.5)

where Pr(θ̂i) is the probability of selection for the ith estimator θ̂i.

If this value equals the parameter θ in the frame, we say that θ̂ is an unbiased
estimator of θ. The difference E(θ̂) − θ ≡ B(θ̂) is known as the bias of the
estimator.

Definition 7: Mean Square Error.
In repeated sampling, the average value of the squared estimation
error is known as the mean square error, mse. Thus,

MSE(θ̂) ≡
∑

δ2
i Pr(θi) =

∑
(θ̂i − θ)2 Pr(θ̂i). (1.6)

The mean square error measures the accuracy of the estimator θ̂ with respect
to the parameter θ. And the positive square root of MSE(θ̂) is known as the
root mean square error.

Definition 8: Sampling Variance.
In repeated sampling, the average value of squared deviation of the
estimator, θ̂, with respect to its expected value is known as the sam-
pling variance.

Var(θ̂) = σ2
θ̂
≡ E(θ̂ − E(θ̂))2 =

∑
(θ̂i − E(θ̂))2 Pr(θ̂i) (1.7)

This variability measure is also known as the precision of the estimator θ̂. The
positive square root of Var(θ̂) is known as the standard error of the estimator,

se(θ̂). And the ratio of se(θ̂) to its expected value, is known as the coefficient

of variation of the estimator θ̂:

CV(θ̂) ≡ se(θ̂)

E(θ̂)
(1.8)

1.4.1 Accuracy, Precision, and Bias

It can be shown that

MSE(θ̂) = E(θ̂ − E(θ̂))2 + (E(θ̂)− θ))2,

where (E(θ̂)− θ)2 ≡ B2(θ̂) is the square bias of the estimator.

Therefore,
MSE(θ̂) = Var(θ̂) + B2(θ̂), (1.9)

i.e., accuracy = precision + square bias of the estimator, θ̂.
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1.5 Non-Sampling Errors

It should be emphasized that sampling errors are intrinsic to the sampling pro-
cedure, due to the fact that we consider a portion n < N of the sampling frame.
Thus, the sampling error diminishes as the sample size increases. However, non-
sampling errors occur both in sampling and in a complete enumeration survey
(census); and these errors could increase as the size of the study increases.

There are many causes for the occurrence of non-sampling errors,2 including:

• Lack of a careful statement of the problem to be investigated and the type
of statistical information needed;

• No operational or clear definition of the population to be investigated;

• A defective or inappropriate sampling frame to access the population of
interest;

• Deficiencies in operational definitions for measures of interest in the study;

• Deficiencies in the questionnaire or the instrument for data gathering;

• Non-response errors (e.g., respondent not found or refuses to answer);

• Response errors (e.g., respondent knowingly gives the wrong answer be-
cause does not understand the question);

• Errors in coding and faulty editing;

• Tabulation errors due to faulty selection of characteristics, class intervals,
too many or too few cross-tabulations;

• Un-trained personnel for both supervision and field work;

• Bad timing for the study;

• Errors induced by the purpose of the study;

• Errors induce by the sponsors of the study;

• Errors, both voluntary or involuntary, induced by the interviewer.

2For a more elaborate list of non-sampling errors, with an extensive discussion, see Chapter
Two of Some Theory of Sampling, by W Edwards Deming.
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1.6 Some Probability Sampling Schemes

In this section, we briefly describe some of the basic probability sampling de-
signs and selection methods. We will elaborate these techniques in subsequent
chapters.

Simple Random Sampling, SRS — Each sampling unit has same chance,
n/N , of being selected from the frame. SRS is an elementary probability sam-
pling design, but it is fundamental for other sampling techniques. It will be the
topic of next Chapter.

Systematic Sampling — Begin with a random start, r, chosen between 1 and
k = N/n. Then, select every kth element until the sample is completed:

r, r + k, r + 2k, r + 3k, . . . , r + (n− 1)k.

There are different variants of systematic selection. For example, suppose that
N = 1, 000 and n = 100; then, k = 1000/100 = 10. If you select random start,
r = 7, then, select the following units from the frame:

7, 17, 27, 37, 47, 57, . . . , 997.

We will discuss systematic sampling in Chapter Three.

Replicated Sampling — It consists on splitting the sample into g, for g ≥ 2,
independent subsamples, each of size m, so that each of these subsamples can
provide valid estimates of the parameter of interest. Notice that mg = n, the
overall sample size.

This technique is also known as interpenetrating sub-samples, a phrase coined
by PC Mahalanobis. Replicated sampling will also be covered in Chapter Three.

Stratified Sampling — Before selection, the frame is divided into few, H say,
homogeneous groups, known as strata. The objective is to obtain as much as
possible homogeneity within a stratum and to mantain heterogeneity between
strata.

For example, suppose that we have three strata (e.g., Small, Medium, and Large)
of sizes N1, N2, N3; where

∑
Ni = N . Make random selection of sampling units

from each stratum: ni of Ni, for i = 1, 2, 3; where
∑3
i=1 ni = n. We will

elaborate on stratified sampling in Chapter Four.

Clustered Sampling — Before selection, the frame is divided into a large num-
ber, M , of non-homogeneous groups, known as clusters. Sampling is performed
in at least two stages:

• Stage I — A random selection of m < M clusters;

• Stage II — A random selection of ni sampling units from each of the m
selected clusters,

∑m
i=1 ni = n.

The objective is to get heterogeneity within clusters and to maintain homogene-
ity between clusters. Clustered sampling will be the topic of Chapter Five.
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Exercises

The practical man is the man who practices the errors of his forefathers—
TH Huxley.a

aCited in, W Edwards Deming; 1960, 1990. Sampling Design in Business Research.
New York: Wiley Classics Library. Page 276.

1. Your are assigned a task of developing a sampling frame for a study of preva-
lence of a male disease in San Juan Metropolitan Area (SJMA). The study will
implement a probability sample survey of men, age 21 years or more. Explain
how you would make such a frame. SJMA is made of the municipalities of:
Bayamón, Carolina, Cataño, Guaynabo, Trujillo Alto, and San Juan.

2. For the study mentioned in the previous exercise, discuss some possible
limitations of the sampling frame.

3. Prepare a sampling frame of your workplace with the following employees’
information: id number (1, 2 . . . N); sex, years of experience, and whether (s)he
travels to work by: car, bus, or train.

4. What would you consider as a sampling frame for a study of un-employement
in Puerto Rico. Explain.

5. What would you consider as a sampling frame for a study of food sales in
Puerto Rico. Explain.
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Chapter 2

Simple Random Sampling

The theory of knowledge teaches us that a statement, if it to convey knowl-
edge, predicts future outcome, with risk of being wrong, and that it fits
without failure observations of the past . . . It is extension of application
that discloses inadequacy of a theory, and need for revision, or even a new
theory. Again, without theory, there is nothing to revise. Without theory,
experience has no meaning. Without theory, one has no question to ask.
Hence without theory, there is no learning.a

aW Edwards Deming; 1993. The New Economics: For Industry, Government, Edu-
cation. Cambridge, MA: MIT, CAES. Pages 105 et seq.

2.1 Introduction

The basic design scheme in probability sampling is known as Simple Random
Sampling, srs. Other design techniques are fundamentally based on srs, and
their purpose is to increase efficiency, relative to srs, and to manage auxiliary
information, and thus to reduce sampling errors.

Definition 9: SRS.
Suppose that we randomly select from a sampling frame, of size N ,
so that each sample of n different units has an equal probability of
being the selected sample. There exist(

N

n

)
=

N !

n! · (N − n)!

possible samples under srs without replacement, srswor, and any of
these samples could be the selected one, with selection probability

Pr(S) =
1(
N
n

) .
11
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Operationally, the selection under srswor is done using a random digits table.1

We select, with equal probability, n different numbers which correspond to n
of the N sampling units labeled: {Ui = 1, 2, 3, . . . , N} in the frame. Every
sampling unit has equal probability of being selected in each of the n selections,
but the previously selected units are disqualified if its id number is repeated
while reading the random digits table.

If sampling is with replacement, srswr, the selected sampling units can be chosen
again in subsequent selections. Under srswr, there are Nn possible samples of
size n; therefore, each sample of n sampling units (not necessarily different) will
have a probability of N−n of being the selected sample.

Under srswr, the probability of selection for any sampling unit in one of the n
selections, is 1/N . Thus, in the n independent selections, the expected value
that each sampling unit u, will be selected is,

E(u) =

n∑
1

uPr(u) =

n times︷ ︸︸ ︷
1/N + 1/N + · · ·+ 1/N =

n

N
. (2.1)

Under srswor, the probability of selection for any sampling unit the first time
is 1/N . For the second selection, the probability of being selected, is 1/(N −1),
conditioned on the probability (N − 1)/N that is as not selected on the first
occasion. Therefore, the probability of it selection on the second occasion is

1

N − 1
× N − 1

N
=

1

N
.

Similarly, the probability of selection on the third occasion is 1/(N − 2), condi-
tioned on the probability that it was not selected on the two previous occasions,
which is

N − 1

N
× N − 2

N − 1
=
N − 2

N
.

Then, the joint probability of being selected on the third selection is 1/N . There-
fore, the total probability will be the sum of the n probabilities, each of which
is 1/N , will be

n times︷ ︸︸ ︷
1

N
+

1

N − 1
· N − 1

N
+

1

N − 2
· N − 1

N
· N − 2

N − 1
+ . . . =

n

N
.

Alternatively, we notice that under srswor, there exist
(
N
n

)
equally possible

samples and among these, there exist
(
N−1
n−1

)
which contain any specific unit.

Therefore, the probability of it selection is(
N−1
n−1

)(
N
n

) =
n

N
, (2.2)

and this is the same, previously obtained, result.

1See e.g., MG Kendall & BB Smith; 1961. Random Sampling Numbers. Cambridge Uni-
versity Press.



2.2. BASIC FORMULAE IN SRS 13

2.1.1 Using Program R

With the advent of fast, low-cost computing, random selection is implemented
easily. For example, using open-source program R, we could make a pseudo-
random selection of n out of N sampling units in a frame. R provides an
easy-to-use function explicitly called sample( ). Thus, if we want to select a
srswor of 10 out of the 1, 000 units in a frame using R, we could proceed as
follows:
U = 1:1000

sample(U, 10).

And, if we want to select a srswr of 10 out of the 1, 000 units in a frame, we
could proceed as follows:
U = 1:1000

sample(U, 10, replace=TRUE).

2.2 Basic Formulae in SRS

Let suppose that the frame has N sampling units, labeled {Ui = 1, 2, 3, . . . , N}.
Furthermore, suppose that it has quantitative measure X, and a binary variable
Y = (0, 1).

Definition 10: Expected Values.
If xi is the ith value of the randomly selected variable X; equiv-

alently, if yi = (0, 1) is the ith value of the randomly selected di-
chotomous variable Y, then, in repeated sampling, their respective
expected values are:

E(xi) =

N∑
1

xi
1

N
= µx, (2.3)

and

E(yi) =
N∑
1

yi
1

N
= py. (2.4)

Definition 11: Variances.
Again, in repeated sampling, the corresponding variances of xi and
yi are, respectively:

σ2
x = E(xi − µx)2 =

N∑
1

(xi − µx)2 1

N
, (2.5)

and

σ2
y = E(yi − py)2 =

N∑
1

(yi − py)2 1

N
= py(1− py). (2.6)
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The positive square root of the variance is known as the standard deviation.

Definition 12: Relative Variance.
The relative variance, RV, is the ratio of the variance and the square

of it corresponding mean value:

RVx ≡
σ2
x

µ2
x

and RVy =
py(1− py)

p2
y

=
1− py
py

, (2.7)

And the coefficient of variation is the corresponding positive square root of the
RV:

CVx ≡
σx
µx

and CVy =

√
1− py
py

. (2.8)

2.3 Sampling Distribution

The sampling distribution of the statistic θ̂, is formed by its different values,
{θ̂i; for i = 1, 2, . . . , D}, and it corresponding probabilities, Pr(θ̂i). The
expected, mean, value of the sampling distribution is, by definition,

E(θ̂i) ≡
D∑
1

θ̂i Pr(θ̂i). (2.9)

If this value equals the parameter θ in the frame, we say that θ̂ is an unbiased
estimator of θ. Otherwise, the difference E(θ̂)− θ ≡ B(θ̂) is its bias.

The variance of the sampling distribution of the statistic θ̂ is the expected value
of the square mean deviation:

Var(θ̂) =
∑

[θ̂i − E(θ̂i)]
2 Pr(θ̂i) (2.10)

The standard deviation of the sampling distribution of the statistic θ̂ is known
as the standard error.

The mean square error , MSE, of the statistic θ̂ is, by definition,

MSE(θ̂) ≡ E(θ̂ − θ)2

= E
(
θ̂ − E(θ̂)

)2

+
(

E(θ̂)− θ
)2

= Var(θ̂) + B2(θ̂). (2.11)
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2.3.1 Covariance

Definition 13: Covariance.
The covariance between measures X and Z is given by,

Cov(XZ) ≡ E[X − E(X)][Z − E(Z)] = σxz. (2.12)

Definition 14: Correlation Coefficient.
If two variables are independent, their covariance is zero (0), and

we say that they are not correlated. This is due to the fact that Karl
Pearson’s linear correlation coefficient is defined as:

Cor(XZ) = ρxz ≡
Cov(XZ)√

Var(X) ·Var(Z)
=

σxz
σx · σz

(2.13)

Notice that ρxz is a pure number, whose range of values is −1 ≤ ρxz ≤ +1.

2.4 Variance of Linear Functions

Suppose that we want to obtain the variance of a measure Y , which is a
linear function of J variables X1, X2, . . . , XJ , weighted by constant factors,
W1,W2, . . . ,WJ . That is, if

Y =

J∑
j=1

Wj Xj . (2.14)

Then, the variance of Y is given by

Var(Y ) = Var

(
J∑
1

Wj Xj

)
=

∑
W 2
j Var(X) + 2

∑
j<k

WjWk Cov(Xj , Xk). (2.15)

An example is the sum or difference of two random variables X1 and X2, where
W1 = 1 y W2 = ±1:

Var(Y ) = Var(X1) + VarX2)± 2 Cov(X1, X2). (2.16)

And if the variables are not correlated, the covariance disappears from the two
previous equations.
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2.5 Variances in SRS

2.5.1 SRSWR

If we randomly select n sampling units with replacement, srswr, the sample total
tx =

∑
xi has variance

Var(tx) = Var

(
n∑
1

xi

)
=

n∑
1

Var(xi) = nσ2
x. (2.17)

Since n is a fixed value, the sample mean, x̄ =
∑
xi/n, is obviously, a linear

function of the obtained values, with constant factor 1/n. Then, the variance
of the sample mean is

Var(x̄) = Var

(
1

n

∑
xi

)
=

1

n2
nσ2

x =
σ2

n
. (2.18)

To estimate the total τx = Nµ, in the sampling frame, we use Nx̄, as estimator.
Its variance is estimated as

Var(Nx̄) = N2Var(x̄). (2.19)

A pertinent exercise is to demonstrate that the coefficient of variation of the
mean, x̄ and the total, tx, are equal.

2.5.2 SRSWOR

Because the sample mean is an unbiased estimator of the mean in the frame,
we note that the total tx, is an unbiased estimator of nµx; i.e., E(tx) = nµx.
Then, the variance of tx is obtained as folows:

Var(x) = E

( n∑
1

xi − nµx

)2


= E

[
n∑
1

(xi − µx)2

]

= E

[
n∑
1

(xi − µx)(xi − µx)

]

= E

 n∑
1

(xi − µx)2 +
∑
i 6=j

(xi − µx)(xj − µx)

 . (2.20)

By squaring the n terms, we get an n × n matrix, where we separate the n
variances in the main diagonal and the remaining n(n− 1) covariances. Under
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srswor, for each of the n(n − 1) pair of covariances, the expected value is the
mean value between the N(N − 1) pairs of covariances in the frame. Similarly,
for each of the n terms of variance, the expected value is the variance of the
sampling units in the frame. Therefore,

Var(tx) =
n

N

N∑
1

(xi − µx)2 +
n(n− 1)

N(N − 1)

[
N∑
1

(xi − µx)(xj − µx)

]

= nσ2
x +

n(n− 1)

N(N − 1)

( N∑
1

(xi − µx)

)2

−
N∑
1

(xi − µx)2

 .(2.21)

The N square terms in the frame result in an N × N matrix,
∑N

1 (xi − µx)2,
and subtracting the N terms of the variance from the main diagonal, it leaves
the remaining covariance terms. We note that the first term in square brackets,
[ ], in the above equation disappears due to the fact that

∑N
1 (xi − µx) = 0;

also, we note that
∑N

1 (xi − µx)2 = Nσ2
x.

Therefore,

Var(tx) = nσ2
x −

n(n− 1)

N(N − 1)
σ2
x

=
N − n
N − 1

nσ2
x

≈ (1− f)nσ2
x. (2.22)

where f = n/N is known as the sampling fraction.

Under srswor the sample size n is fixed; then, the variance of the sample mean
is given by

Var(x̄) = Var(tx/n) =
1

n2
Var(x) ≈ 1− f

n
σ2
x. (2.23)

Also,

Var(Nx̄) = N2Var(x̄) ≈ N(1− f)

n
σ2
x. (2.24)

2.6 Variances Estimation and Standard Errors

To estimate the mean of variable X in the frame, (µx), we use the mean of the
n sampling units: x̄ = tx/n =

∑
xi/n.

Under srswor, we estimate the variance of the sample mean, using the sample
variance, s2

x:

V̂ar(x̄) ≈ 1− f
n

s2
x, (2.25)
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where

s2
x =

1

n− 1

n∑
1

(xi − x̄)2. (2.26)

Therefore, the “standard error of the mean” is estimated as the positive square
root of the variance of the sample mean,

sx̄ ≈
√

1− f s√
n
. (2.27)

If we want to estimate the total of variable X in the frame, Nµx, we use Nx̄ as
estimator, whose standard error is estimated,

sNx̄ ≈ N
√

1− f s√
n

= N sx̄. (2.28)

Because, in practice, most of the times the sampling fraction f = n/N is small,
then, the multiplier 1− f → 1.

Notice the following illustration:

f = 0.10 0.05 0.01 0.001 0.0001√
1− f ≈ 0.95 0.97 0.99 0.999 0.9999

2.7 Estimation of a Proportion

To estimate a proportion, py, of a binary variable Y = (0, 1) in the frame, we use
the sampling proportion, p̂y = ty/n, where ty =

∑n
1 yi is the total of sampling

units which have the characteristic of interest.

Under srswor, the variance of the sampling proportion is estimated using

V̂ar(p̂y) ≈ (1− f)
p̂y(1− p̂y)

n− 1
(2.29)

Then, the standard error of the sampling proportion is estimated as

sp̂y ≈
√

(1− f)
p̂y(1− p̂y)

n− 1
. (2.30)

Commonly, in the basic statistic texts, the denominator of the previous equation
is n instead of n − 1, even though sampling without replacement is assumed.
This is due to the fact that for large sample sizes, there will be no substantial
difference.

The coefficient of variation estimator of the sampling proportion is given by

CV(p̂y) ≈

√
(1− f)

(1− p̂y)

p̂y(n− 1)
. (2.31)

Under srswr, the multiplier 1− f does not appear because the size of the frame
does not vary from selection to selection and, essentially, is equivalent to sample
from an infinite population (or a process).
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2.8 Sample Size Under SRS

Remark The size of sample is no criterion of its precision, nor of its
accuracy, nor of its usefulness. The procedure of stratification, the choice
of sampling unit, the formulas prescribed for the estimations, are more
important than size in the determination of precision. Once these features
are fixed, then as we can increase the size of the sample drawn with random
numbers, we gain precision (though the point of diminishing returns comes
rapidly).a

aW Edwards Deming; 1960, 1990. Sample Design in Business Research. New York:
Wiley Classics Library. Page 28.

As we previously observed, under SRS, the variance of the sample mean is

Var(x̄) ≈ 1− f
n

σ2
x

=
σ2
x

n′
, (2.32)

where

n′ =
n

1− f
. (2.33)

Then, for a required variance of the sample mean (or its coefficient of variation),
the sample size is calculated using

n′ =
σ2
x

Var(x̄)
=

σ2
x/µ

2
x

Var(x̄)/µ2
x

=
RVx

RVx̄
. (2.34)

Then,

n =
n′

1 + n′/N
. (2.35)

It is assumed that the researcher knows the variance (or coefficient of variation)
in the frame. Of course, this measure is typically unknown; thus, we need an
estimate based on a previous study, or from the variance of a similar variable.

Alternatively, to calculate the required sample size, we can use the relative
variance of the sample mean. This is given by

RV(x̄) = (1− f)
RVx

n
=

RVx

n′
(2.36)

where as before, n′ = n/(1− f).

Then,

n′ =
RVx

RVx̄
(2.37)



20 CHAPTER 2. SIMPLE RANDOM SAMPLING

and, again,

n =
n′

1 + n′/N
. (2.38)

Equivalently, for the sample proportion, we notice that its variance is,

Var(p̂y) ≈ 1− f
n

σ2
y

=
σ2
y

n′
, (2.39)

where
n′ =

n

1− f
(2.40)

Then, for a required variance of the sample proportion,

n′ =
RVy

RVp̂y

(2.41)

and, again,

n =
n′

1 + n′/N
. (2.42)

Alternatively, using the relative variance of the sample proportion,

RV(p̂y) = (1− f)
1− py
npy

=
RVy

n′
(2.43)

where, as before, n′ = n/(1− f).

Then, for a required relative variance of the sample proportion,

n′ =
RVy

Var(p̂y)
. (2.44)

Finally, we obtain as sample size (as above)

n =
n′

1 + n′/N
. (2.45)
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Exercises

Knowledge is a scarce national resource. Knowledge in any country
is a national resource. Unlike rare metals, which can not be replaced, the
supply of knowledge in any field can be increased by education. Education
can be formal, as in school. It may be informal, by study at home or on
the job. It may be supplemented and rounded out by work and review under
a master. A company must, for its very existence, make use of the store
of knowledge that exists within the company, and learn how to make use of
help from the outside when it can be effective.a

aW Edwards Deming; 1986. Out of the Crisis. Cambridge, MA: MIT CAES. Page
466.

1. An urn contains five chips, numbered {x = 1, 2, . . . , 5}; three are yellow, and
two are green. You are going to select a sample of two chips.

• List the number of possible samples if sampling were without replacement;

• Form the sampling distribution of x̄, the average of x in the sample;

• Form the sampling distribution of p̂g, the proportion green in the sample;

• Verify that E(x̄) = µx, the mean of x in the frame;

• Verify that E(p̂g) = pg, the proportion green in the frame;

• Use the results of sampling theory to obtain Var(x̄) and Var(p̂).

2. Consider a frame of five employees: A, B, C, D, & E have sex: F, M, M, F,
& F; and years of experience: 3.5, 5, 4.5, 2.5, & 6.

• Summarize their mean experience µx, and proportion female pF ;

• How many samples of size two can be selected (without replacement);
enumerate them;

• For each of the selected samples estimate the mean experience x̄i and
proportion female p̂F ;

• Obtain the mean of the sample means, and the mean of the sample pro-
portions. The results should coincide with µx, mean experience of the all
employees, and proportion female pF , in the frame.

3. A sample (srswor) of 50 households drawn from a community of 800 house-
holds, reveals that: 12 of the head were single mothers.

• Estimate the proportion of single mothers in the community, its standard
error, and give a 95% confidence interval for said proportion;
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• What is the estimate of the total single mothers in the community? Obtain
its standard error, and give a 95% confidence interval for said total;

• What is the estimated coefficient of variation in both cases?

4. Using program R, examine package UsingR, select its cfb data frame, with
the following commands:
library(UsingR)

data(cfb)

attach(cfb)

str(cfb)

Using function sample( ), take a sample of 100 cases, without replacement, of
variable INCOME. Prepare a histogram and a numerical summary of said variable.
Notice that because of independent random selection, each participant will get
different results. Compare your results with variable INCOME in the frame.

5. Repeat the previous exercise for variables AGE, EDUC, and SAVING.

Expert knowledge, judgement, sincerity, and honesty, are all necessary in-
gredients of any science, but they are not sufficient to make a sample. There
is no substitute for the use of statistical theory.a

a W Edwards Deming; 1960, 1990. Sample Design in Business Research. New York:
Wiley Classics Library. Page 28.



Chapter 3

Systematic and Replicated
Sampling

Replication originated with Mahalanobis in 1936, and it is a pleasure to
express my appreciation for the privilege of studying his method in India,
in 1946 and again in 1951 and 1952. He uses the term interpenetrating
subsamples, which has much merit . . . Replicated sampling went under the
name of the Tukey plan in my earlier papers and in my book Some Theory
of Sampling . . . in respect to my friend Professor John W Tukey, who in
1948 took the trouble to persuade me to use 10 interpenetrating subsamples
in a certain application, to eliminate the labor of computing the standard
errors.a

aW Edwards Deming; 1960, 1990. Sample Design in Business Research. New York:
Wiley Classics Library. Page 186 et seq.

3.1 Introduction to Systematic Sampling

As we pointed out, simple random sampling forms the basis of probability sam-
pling. Other sampling schemes and techniques aim to improve the efficiency, to
reduce sampling errors. A convenient method for sample selection and analysis
is systematic sampling.

Definition 15: Random Start.
A number r, randomly selected between 1 and k inclusive, is known

as a random start. The rest of the sample selection depends on this
random start, in which we select every other kth sampling unit until
the n units are obtained.

Systematic sampling is a technique that maintains the characteristics of prob-
ability sampling, commencing the sample selection with one or more random

23
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starts, following certain pattern for subsequent sample selections until the sam-
ples size is obtained.

Let N be the size of the sampling frame, made of units U1, U2, . . . , UN , and n
is the sample size. Compute k = N/n, known as the sampling interval (the
reciprocal of the sampling fraction), and take the integer nearest to k.

Definition 16: Linear Systematic Sampling.
In case that k = N/n is an integer, the sample selection is an easy

task. Just select a random start, r, between 1 and k; the n selected
sampling units will be numbered:

r, r + k, r + 2k, . . . , r + (n− 1)× k. (3.1)

This is known as linear systematic sampling with a random start.

For example, suppose that the frame hasN = 2000 sampling units, U1, U2, . . . , U2000,
and n = 250. Then k = 8, which means that we will select a random start, r,
between 1 and 8. If for example, r = 3, then the n selected sampling units will
be numbered:

3, 3 + 8, 3 + 2× 8, . . . , 3 + (250− 1)× 8. (3.2)

In other words, the selected sampling units will be numbered U3, U11, U19 . . . , U1995.
Notice that the selected sample is evenly distributed in reference to the sampling
frame. Furthermore, as in srswor, no sampling unit appears more than once in
the selected sample.

An alternative to linear systematic selection is the following method.

Definition 17: Circular Systematic Sampling.
Let k = N/n, or the nearest integer to N/n; then, select a random
start, r, between 1 and N , the size of the sampling frame. The
sample of n units is systematically obtained as those corresponding
to the numbers:

r + jk if r + jk ≤ N
r + jk −N if r + jk > N. (3.3)

for j = 0, 1 . . . , (n− 1).

This method of selection is known as circular systematic sampling
with a random start.

For example, suppose that we have a very simple frame made of 10 sampling
units, U1, U2, . . . , U10, and that we want to select n = 3 units. This implies that
k = 3. We choose a random start between 1 and 10; suppose that r = 5. Then,
our sample will be made of those units corresponding to the numbers: 5, 8, and
1. That is, the selected sampling units will be U1, U5, and U8.
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3.2 Some Advantages of Systematic Sampling

Systematic sampling offers several advantages, besides selection convenience. It
is operationally simple, which can be of great relevance in large-sample studies.
The training of field supervisors and interviewers and of other people working
in the study is greatly simplified. In a field study, systematic sampling can be
used to select the sample progressively, where the field workers are provided
with sampling intervals based on prior information.

Systematic sampling can even be used for quick preliminary tabulation of census
results using say, a 10% sample of people in the study.

3.3 Sampling Probability

We note that in linear systematic sampling with a random start, the probability
of selection for any possible sample is 1/k. For example, in a simplified frame
of six sampling units U1, U2, . . . , U6, and n = 2, then k = 3. The distribution of
possible samples, with the corresponding probabilities are:

r units Pr
1 1, 4 1/3
2 2, 5 1/3
3 3, 6 1/3

If x is a quantity of interest, with mean µx and variance σ2
x =

∑N
i=1(xi−µx)2/N ,

the sampling distribution of mean x̄r =
∑n
i=1 xri/n, for r = 1, 2, . . . , k has

expected value:

E(x̄r) =

k∑
r=1

x̄r
1

k
= µx. (3.4)

And variance given by

Var(x̄r) =

k∑
r=1

(x̄r − µx)2 1

k
≡ σ2

b . (3.5)

It can be shown that if we split the variance σ2
x into the between-sample variance,

σ2
b , and within-sample variance, σ2

w: σ2
x = σ2

b + σ2
w, where

σ2
w =

k∑
r=1

σ2
wr

1

k
, for σ2

wr =

n∑
i=1

(xri − x̄r)2 1

n
, (3.6)

then,

Var(x̄r) = σ2
x − σ2

w. (3.7)
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Moral on Systematic Sampling

The above result can be interpreted by saying that in order to reduce the sam-
pling error (and thus, to increase precision), we should arrange the sampling
frame such that the sampling units within each systematic sample are as het-
erogeneous as possible with respect to the measure of interest. This implies that
similar units within the sampling frame should be put together with respect to
the measure of interest. Thus, one way of improving the sampling precision is
by arranging the sampling units in certain order (ascending or descending) with
respect to the measure of interest.

Definition 18: Intra-class Correlation.
The correlation between pairs of sampling units within the system-
atic sample is known as the intra-class correlation coefficient. This
is given by,

ρc =

∑k
r=1

∑n
i=1

∑n
i 6=i′(xri − µx)(xri′ − µx)

N(n− 1)σ2
x

. (3.8)

The intra-class correlation coefficient has range: − 1
n−1 ≤ ρc ≤ 1. And it can be

shown that

Var(x̄r) =
σ2
x

n
× (1 + (n− 1)ρc). (3.9)

Therefore, if ρc takes as large, negative value, then Var(x̄r) decreases, and
thus, the sampling precision increases. And we end up with the same mes-
sage, namely: the sampling units within each systematic sample should be as
heterogeneous as possible with respect to the measure of interest.

Exercises

1. Suppose that a book of N = 500 pages will be examined in order to estimate
the total number of errors. For our purpose, we will randomly select a sample
of n = 30 pages.

• Explain how you would select the sample if you use srswor ;

• Explain how you would select the sample if you use linear systematic
sampling ;

• Explain how you would select the sample if you use circular systematic
sampling.

2. Suppose that you are assigned a task of selecting a sample of employees from
an agency that has N = 3, 000 employees. The purpose is to estimate various
parameters related to years of experience. The proposed sampling plan is to
randomly select a sample of n = 250 employees.
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• Explain how you would select the sample if you use srswor ;

• Explain how you would select the sample if you use linear systematic
sampling ;

• Explain how you would select the sample if you use circular systematic
sampling.

3. Suppose that you are assigned a task of selecting a sample of units of a
product from a lot that has N = 1, 000 units. The purpose is to estimate the
proportion pd of defective units in the lot. The proposed sampling plan is to
randomly select a sample of n = 50 units.

• Explain how you would select the sample if you use srswor ;

• Explain how you would select the sample if you use linear systematic
sampling ;

• Explain how you would select the sample if you use circular systematic
sampling.

3.4 Systematic Sampling Using Program R

What follows is a set of commands to obtain a systematic sample, using program
R. First, we present the commands to obtain the required sample indicating both
the sampling frame size, N , and the sample size, n.

3.4.1 Linear Systematic Sampling

Suppose that we want to solve exercise 1 above, using linear systematic sam-
pling with program R. Then, we could use the following function:
linear.sample=function(N=500, n=30){
k=round(N/n, 0)

r = sample(1:k, 1)

syst.samp= seq(r, r+k*(n-1), k)

cat("Your Linear Systematic Sample is: ", return(syst.samp), "\n")
}

Then, for example, to obtain the desired sample, type the command,
linear.sample(500, 30)
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3.4.2 Circular Systematic Sampling

Suppose that we want to solve exercise 1 above, using circular systematic sam-
pling with program R. Then, we could use the following function:
circ.sample=function(N=500, n=30){
k = round(N/n, 0)

r = sample(1:N, 1)

f = n-1

circ.syst=r

for (j in 1:f) {
if (r + j*k <= N)

circ.syst = c(circ.syst, r+j*k)

else

(circ.syst = c(circ.syst, r+j*k-N))

}
cat("Your Circular Systematic Sample is: ", return(circ.syst)), "\n")
}

Then, for example, to obtain the desired sample, type the command,
circ.sample(500, 30)

3.5 Introduction to Replicated Sampling

As we pointed out in Chapter Two, Replicated Sampling consists on selecting g ≥
2 independent subsamples using the same sampling design procedure, so that
each of these subsamples can provide valid estimates of the parameter of interest.
Replicated sampling is also known as interpenetrating sub-samples, a phrase
coined by PC Mahalanobis, who was Director of the Indian Statistical Institute
in Calcutta. In Part II of his book, Sample Design in Business Research, Deming
describes the use and usefulness of replicated sampling.

This sampling technique facilitates the estimation of the variance of the esti-
mator, even for more elaborate sample designs, where its estimation could be
complicated. If θ̂1, θ̂2, . . . , θ̂g are estimates for parameter θ, based on g indepen-
dent replicated subsamples, then

θ̂ =

g∑
i=1

θ̂i
1

g
(3.10)

will be an unbiased estimator of θ, where the variance of θ̂ is estimated as

V̂ar(θ̂) =
1

g(g − 1)

g∑
i=1

(θ̂i − θ̂)2. (3.11)
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Notice that if g = 2, then

V̂ar(θ̂) =
1

4
(θ̂1 − θ̂2)2. (3.12)

The sample, so divided into g independent replicated subsamples not only facili-
tates the estimation of sampling errors, but also helps in detecting and correcting
non-sampling errors as well; thus increasing the reliability of sample surveys.

3.6 Estimation of µx in R-SRS

Suppose that we want to estimate the frame mean, µx, selecting n sampling units
from a frame using replicated-simple random sampling. We randomly draw m
units from each of the g ≥ 2 independent subsamples, where m× g = n. Then
from each subsample, we get an estimator x̄i =

∑m
j=1 xj/m, of µx, for i = 1 : g,

with sampling variance σ2
x/m. Then, by equations 1 and 2, above,

x̄ =

g∑
i=1

x̄i
1

g
, (3.13)

and

V̂ar(x̄) =
1

g(g − 1)

g∑
i=1

(x̄i − x̄)2. (3.14)

Notice that if g = 2, then

V̂ar(x̄) =
1

4
(x̄1 − x̄2)2. (3.15)

3.6.1 Estimation of py in R-SRS

Similarly, if y = (0, 1) is a dichotomous variable, and we want to estimate py, the
proportion of interest in the frame, we randomly draw m units from each of the
g independent replicated subsamples (m× g = n). Then from each subsample,
we get an estimator p̂i =

∑m
j=1 yj/m, of py, for i = 1 : g, with sampling variance

py(1− py)/m. Then, by equations 1 and 2, above,

p̄y =

g∑
i=1

p̂i
1

g
, (3.16)

and

V̂ar(p̄y) =
1

g(g − 1)

g∑
i=1

(p̂i − p̄y)2. (3.17)

Notice that if g = 2, then

V̂ar(p̄y) =
1

4
(p̂1 − p̂2)2. (3.18)
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3.7 Replicated-SRS Using Program R

Suppose that we want to select a replicated simple random sample of size n from
a frame containing N sampling units. The n randomly selected units will be
divided into g ≥ 2 independent replicated subsamples, each containing m = n/g
units. Notice that m has to be a multiple of n and g.

A very simple R function, which accomplish this task follows:
# Replicated-SRS Using R

replic.srs = function(N=500, n=30, g=6){
m = n/g

samp = sample(1:N, n)

samp = matrix(samp, nrow=m)

samp

}

Then, for example, to obtain the desired sample, type the command,
replic.srs(500, 30, 6)

3.8 Estimation of µx in R-SysRS

Suppose that we want to estimate the frame mean, µx, selecting n sampling units
from a frame using replicated-systematic random sampling. Now, we need two
or more independent random starts, between 1 and k = N/m, if we use linear
systematic sampling, or between 1 and N , if we are using circular systematic
sampling. We systematically draw m units, using g different random starts from
each of the g ≥ 2 independent replicated subsamples, (m× g = n). Then from
each subsample, we get an estimator x̄i =

∑m
j=1 xj/m, of the frame mean µx,

for i = 1 : g, with sampling variance σ2
x/m. Then, by Equations 1 and 2, above,

x̄ =

g∑
i=1

x̄i
1

g
, (3.19)

and

V̂ar(x̄) =
1

g(g − 1)

g∑
i=1

(x̄i − x̄)2. (3.20)

Notice that if g = 2, then

V̂ar(x̄) =
1

4
(x̄1 − x̄2)2. (3.21)

3.8.1 Estimation of py in R-SysRS

Suppose that we want to estimate a proportion of interest in the frame, py,
selecting n sampling units using replicated-systematic random sampling. Now,
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we need two or more independent random starts, between 1 and k = N/m, if
we use linear systematic sampling, or between 1 and N , if we are using circular
systematic sampling. If y = (0, 1) is a dichotomous variable, and we want to
estimate py, we systematically draw m units, using g different random starts
from each of the g ≥ 2 independent subsamples (m × g = n). Then from each
subsample, we get an estimator p̂i =

∑m
j=1 yj/m, of py, for i = 1 : g, with

sampling variance py(1− py)/m. Then, by equations 1 and 2, above,

p̄y =

g∑
i=1

p̂i
1

g
, (3.22)

and

V̂ar(p̄y) =
1

g(g − 1)

g∑
i=1

(p̂i − p̄y)2. (3.23)

Notice that if g = 2, then

V̂ar(p̄y) =
1

4
(p̂1 − p̂2)2. (3.24)

We remark that for replicated sampling, although the estimation formulae in
both simple random sampling and systematic sampling are equivalent, they are
based on different concepts. In replicated-simple random sampling, the num-
ber of possible samples is g ×

(
N
m

)
, while in replicated-systematic sampling, the

number of possible samples is g ≤ k.

We also emphasize that replicated-systematic sampling can be used in com-
bination with other probability sampling designs like stratified sampling and
clustered sampling.

3.9 Replicated Linear-Systematic Sample Using
R

Suppose that we want to select a replicated linear-systematic sample of size n
from a frame containing N sampling units. The n randomly selected units will
be divided into g ≥ 2 independent sub-samples, each containing m = n/g units.
Now, we need g random starts between 1 and k = N/m. Notice that m has to
be a multiple of n and g.

A very simple R function, which accomplishes this task follows:
# Replicated Linear-Systematic Sample Using R

linear.replic=function(N=500, n=30, g=6){
m = round(n/g,0)

k = round(N/m, 0)

syst.samp = NULL

for (i in 1:g){
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r = sample(1:k, 1)

syst.samp = c(syst.samp, seq(r, k*m, k))

}
syst.samp = matrix(syst.samp, nrow=m)

cat("Your Replicated Linear-Systematic Sample is: ", return(syst.samp)),

"\n")
}

Then, for example, to obtain the desired sample, type the command:
linear.replic(500, 30, 6)

3.9.1 Replicated Circular-Systematic Sample Using R

Suppose that we want to select a replicated circular-systematic sample of size n
from a frame containing N sampling units. The n randomly selected units will
be divided into g ≥ 2 independent sub-samples, each containing m = n/g units.
Now, we need g random starts between 1 and k = N/m. Notice that m has to
be a multiple of n and g.

A very simple program which accomplishes this task follows:
# Replicated Circular-Systematic Sample Using R

circular.replic=function(N=500, n=30, g=6){
m = round(n/g,0)

k = round(N/m, 0)

circ.syst = NULL

for (i in 1:g){
r = sample(1:N, 1)

f = m-1

for (j in 0:f){
if (r + j*k <= N)

circ.syst = c(circ.syst, r+j*k)

else

(circ.syst = c(circ.syst, r+j*k-N))

}
}
circ.syst = matrix(circ.syst, nrow=m)

cat("Your Replicated Circular-Systematic Sample is: ", return(circ.syst),

"\n")
}

Then, for example, to obtain the desired sample, type the command,
circular.replic(500, 30, 6)
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Exercises

1. Suppose that a book of N = 500 pages will be examined in order to estimate
the total number of errors. For our purpose, we will randomly select a sample
of n = 30 pages.

• Explain how you would select the sample if you use replicated-srswor and
g = 6;

• Explain how you would select the sample if you use replicated-linear sys-
tematic sampling and g = 6;

• Explain how you would select the sample if you use replicated-circular
systematic sampling and g = 6.

2. Suppose that you are assigned a task of selecting a sample of employees from
an agency that has N = 3, 000 employees. The purpose is to estimate various
parameters related to years of experience. The proposed sampling plan is to
randomly select a sample of n = 250 employees.

• Explain how you would select the sample if you use replicated-srswor and
g = 10;

• Explain how you would select the sample if you use replicated-linear sys-
tematic sampling and g = 10;

• Explain how you would select the sample if you use replicated-circular
systematic sampling and g = 10.

3. Suppose that you are assigned a task of selecting a sample of units of a
product from a lot that has N = 1, 000 units. The purpose is to estimate the
proportion pd of defective units in the lot. The proposed sampling plan is to
randomly select a sample of n = 50 units.

• Explain how you would select the sample if you use replicated-srswor and
g = 5;

• Explain how you would select the sample if you use replicated-linear sys-
tematic sampling and g = 5;

• Explain how you would select the sample if you use replicated-circular
systematic sampling and g = 5.
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Chapter 4

Basics of Stratified
Sampling

Remark. Such a calculation of “significance” takes account only of the
numerical data of this one experiment. An estimate of σ unless the ob-
servations have demonstrated randomness, . . . and not unless the number
of degrees of freedom . . . amount to be 15 or 20, and preferably more. A
broad of background of experience is necessary before one can say whether
his experiment is carried of by demonstrably random methods. Moreover,
even in the state of randomness, it must be borne in mind that unless the
number of degrees of freedom is very large, a new experiment will give new
values of both σ(ext) and σ(int), also of P (χ) and P (z). Ordinarily, there
will be a series of experiments, and a corresponding series of P values. It is
the consistency of the P values of the series, under a wide variety of con-
ditions, and not the smallness of any one P value by itself that determines
a basis for action, particularly when we are dealing with a cause system un-
derlying scientific law . . . In the absence of a large number of experiments,
related knowledge of the subject and scientific judgement must be relied on
to a great extent in framing a course of action. Statistical “significance” by
itself is not a rational basis for action .a

aW Edwards Deming; 1943, 1964. Statistical Adjustment of Data. New York: Dover
Publications. Page 30.
N.B. σ(ext) and σ(int) represent external and internal variability of an experiment.

4.1 Introduction

As we pointed out in Chapter One, in stratified sampling , previous to the
sample selection, the sampling frame is divided into few, H say, homogeneous
groups, known as strata. These groups are formed based on certain auxiliary

35
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variable, which would help to increase sampling precision of the measure(s) of
interest in the research under study. These non-overlapping groups or strata,
could be formed by e.g., geographical areas, age-groups, or sex. A sample is
randomly taken from each stratum, and then this sample is referred to as a
stratified random sample. The process is called statification and its objective
is to obtain as much homogeneity as possible within a group or stratum and
to mantain heterogeneity between groups or strata. Thus, stratification is the
process of grouping members of the frame into relatively homogeneous subgroups
before sampling. Then random or systematic sampling is performed within each
stratum. There are several designs or schemes of stratified sampling.

The strata should be mutually exclusive, i.e., every element in the sampling
frame must be assigned to only one stratum. The strata should also be collec-
tively exhaustive, i.e., no sampling unit in the frame can be excluded.

Let N be the size of the sampling frame, and Nh be the size of stratum h,
where

∑
Nh = N , for h = 1 : H. Stratified sampling proceeds by randomly

selecting nh sampling units from Nh units in stratum h, where
∑
nh = n. For

example, suppose that we have two strata of sizes N1 = 200 and N2 = 300;
where

∑
Nh = 500. Take a random selection of n1 = 20 sampling units from

stratum one and, independently, take a random selection of n2 = 30 sampling
units from stratum two, where n =

∑
nh = 50. Notice that now, we can obtain

separate estimates from each stratum and also, combine these estimates in order
to get estimates of the entire sampling frame.

Some examples of situations where you might want to use stratified sampling
are:

1. Health care costs – stratify based on patient’s age;

2. Socio-economic survey – stratify based on home value;

3. Yield of farm product – stratify based on farm size, e.g.: Small (< 50
acres), Medium (between 50 and 100 acres), Large (> 100 acres);

4. Study of prevalence of a disease in a country – stratify by health region;

5. Employee income – stratify on years of experience and sex.

When choosing a criterium to stratify on, we should use an instrumental variable
that is associated to the variable of interest as this should make the precision
per stratum small.

4.2 Some Advantages of Stratified Sampling

When sub-populations vary considerably, it is advantageous to sample each
sub-population or stratum independently. And, provided that the strata are
formed so that members of the same stratum are as similar as possible with
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respect of the characteristic of interest, stratification will always achieve greater
precision than simple random sampling. The more heterogeneity or the bigger
the differences between the strata, the greater the gain in precision.

Stratification often improves the representativeness of the sample by reducing
sampling error. It can produce a weighted estimate that has less variability than
the same estimate under a simple random sample of the sampling frame.

It is often administratively convenient to stratify a sample. Interviewers for
example, can be specifically trained to deal with a particular age- or sex-group,
or employees in a particular industry.

The results from each stratum may be of intrinsic interest in a study and by
stratifying, can be analyzed separately.

Stratification also ensures better coverage of the population than simple random
sampling.

Stratification also allows the use of different sampling techniques for different
sub-groups.

4.2.1 Some Disadvantages of Stratified Sampling

On occasions, it is difficult to identify appropriate strata. Or simply, the frame
is naturally stratified and there is no need for further stratification.

Usually, it is more complex to organize and analyze the results, compared with
simple random sampling.

Sometimes, it can be difficult to select relevant stratification variables. It is not
useful when the groups formed by the stratification process are not homogeneous
with respect to the measure(s) of interest in a study.

Stratified sampling can be expensive. It requires accurate information about
the population represented in the sampling frame.

4.3 Proportional Stratified Sampling

The technique known as proportional stratified sampling is the most common
stratified sampling design. By definition, in proportional stratified sampling
design, for each stratum h,

nh
n

=
Nh
N
, for h = 1 : H. (4.1)

This is known as proportional allocation, and it means that each stratum is
represented in the sample in proportion to the stratum size in the sampling
frame; this proportion is

Ph =
Nh
N
, where

H∑
h=1

Ph = 1. (4.2)
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For example, for two strata, if the sampling frame is made of 60% units in
stratum one and 40% units in stratum two, then the relative size of the two
independent samples should reflect these proportions, i.e., the sample size allo-
cation will be n1 = 0.6n and n2 = 0.4n.

4.4 Other Stratified Sampling Allocations

There are a number of different stratified sampling schemes, besides proportional
allocation, that can be used, some better than others. We mention two of them:

1. Equal allocation – Where we set n1 = n2 = · · · = nH ;

2. Optimal allocation – We choose n1, . . . , nH which minimises the variance
of a stratified estimator; e.g., Var(µ̂str) for a given sample size n, i.e.,

nh = n
Ph σh∑H
j=1 Pj σj

∝ Ph σh (4.3)

i.e., the sample allocation to stratum h will depend on both the proportion
of sampling units in the frame, Ph, and the stratum variability, σh.

Both Var(µ̂str) and σh are given below (see Equations 4.8 to 4.10). We notice
that optimal allocation implies that there will be more observations in the more
variable strata. And, if the cost of gathering information differs from stratum
to stratum, sampling theory shows that,

nh ∝ Ph σh/
√
ch, (4.4)

where ch is the per unit cost in stratum h. Thus, the larger the cost of obtaining
information from stratum h, the smaller the sampling units selected from said
stratum.

4.4.1 Proportional Allocation Using R (Two Strata)

Suppose that the N sampling units in the frame are divided into two strata:
the first N1 units belong to stratum one, the other N2 units belong to stratum
two. Furthermore, suppose that we will use a proportional allocation design.

A very simple R program to obtain a proportional stratified sample follows:
# Proportional Stratified Sample Using R

prop.sample=function(N=500, N1=200, N2=300, n=30){
P1=round(N1/N, 2); P2=round(1-P1, 2)

n1 = round(n*P1, 0); n2 = n - n1

stratum.1=1:N1; stratum.2=(N1+1):N
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pr.samp.1=sample(stratum.1, n1)

pr.samp.2=sample(stratum.2, n2)

samp=c(pr.samp.1, pr.samp.2)

cat("Your Proportional Stratified Sample is: ", return(samp),"\n")
}

4.4.2 Equal Allocation Using R (Two Strata)

Suppose that the N sampling units in the frame are divided into two strata:
the first N1 units belong to stratum one, the other N2 units belong to stratum
two. Furthermore, suppose that we will use an equal allocation design.

A very simple R program to obtain an equal allocation sample follows:
# Equal Stratified Sample Using R

equal.sample=function(N=500, N1=200, N2=300, n=30){
n1 = round(n/2, 0); n2 = n1

stratum.1=1:N1; stratum.2=(N1+1):N

eq.samp.1=sample(stratum.1, n1)

eq.samp.2=sample(stratum.2, n2)

samp = c(eq.samp.1, eq.samp.2)

cat("Your Equal Stratified Sample is: ", return(samp), "\n")
}

4.4.3 Optimal Allocation Using R (Two Strata)

Suppose that the N sampling units in the frame are divided into two strata:
the first N1 units belong to stratum one, the other N2 units belong to stratum
two. Now, we need to know the sample variability of each stratum, σ1 and σ2.
Furthermore, suppose that we will use an optimal allocation design, with equal
per unit cost in each stratum, c1 = c2.

A very simple R program to obtain an optimal stratified sample follows:
# Optimal Stratified Sample Using R

optim.sample=function(N=500, N1=200, N2=300, sigma.1=50, sigma.2=25,

n=30){
P1=round(N1/N, 2); P2=round(1-P1, 2)

n1 = round(n*P1*sigma.1/(P1*sigma.1 + P2*sigma.2), 0); n2 = n - n1

stratum.1=1:N1; stratum.2=(N1+1):N

op.samp.1=sample(stratum.1, n1)

op.samp.2=sample(stratum.2, n2)

samp = c(op.samp.1, op.samp.2)

cat("Your Optimal Stratified Sample is: ", return(samp), "\n")
}
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4.5 Estimation of the mean, µx, in the frame

Suppose your that the sampling frame is divided into H strata. Also, suppose
that for stratum h, there are Nh sampling units from the frame (

∑H
h=1Nh = N)

and the X-value for the units in stratum h is given by x1h, x2h, . . . , xNhh.

Let

Ph =
Nh
N

and µh =
1

Nh

Nh∑
i=1

xih (4.5)

And,

µx =
1

N

H∑
h=1

Nh∑
i=1

xih =
1

N

H∑
h=1

Nh µh =

H∑
h=1

Ph µh (4.6)

Then, instead of taking a sample of n sampling units using srs from the whole
frame, we can take a sample of nh sampling units using srs from each stratum
(
∑H
h=1 nh = n).

Let x1h, x2h, . . . , xnhh be the sample from stratum h and let,

x̄h =
1

nh

nh∑
i=1

xih s2
h =

1

nh − 1

nh∑
i=1

(xih − x̄h)2 (4.7)

be respectively, the sample mean and sample variance of stratum h.

Then, an unbiased estimate of the frame mean µstr is given by

µ̂str =

H∑
h=1

Nh
N
x̄h =

H∑
h=1

Phx̄h. (4.8)

The variance of µ̂str is given by

Var(µ̂str) ≈
H∑
h=1

P 2
h

1

nh
(1− fh)σ2

h, (4.9)

where fh = nh

Nh
, the sampling fraction in stratum h, and

σ2
h =

1

Nh

Nh∑
i=1

(xih − µh)2, (4.10)

i.e., the variance of stratum h.

We notice that whether stratified sampling is preferred to SRS depends on the
condition,

Var(µ̂str) < Var(µ̂srs) =
1

n
(1− f)σ2

x, (4.11)

i.e., it depends on the choice of sample sizes of the strata, nh, the variation of
the strata means, µh, and the strata variances, σ2

h.
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4.5.1 Estimation of the proportion, py, in the frame

Suppose that the sampling frame is divided into H strata. Also, suppose that
for stratum h, there are Nh sampling units from the frame (

∑H
h=1Nh = N)

and for variable Y = (0, 1) (a dichotomous variable) the value for the units in
stratum h is given by y1h, y2h, . . . , yNhh.

Let

Ph =
Nh
N

and pyh =
1

Nh

Nh∑
i=1

yih. (4.12)

And,

py =
1

N

H∑
h=1

Nh∑
i=1

yih =
1

N

H∑
h=1

Nh pyh =

H∑
h=1

Ph pyh . (4.13)

Then, instead of taking a sample of n sampling units using srs from the whole
frame, we can take a sample of nh sampling units using srs from each stratum
(
∑H
h=1 nh = n).

Let y1h, y2h, . . . , ynhh be the sample from stratum h and let,

p̂yh =
1

nh

nh∑
i=1

yih s2
p̂yh

=
1

nh − 1

nh∑
i=1

(yih − p̂h)2 (4.14)

be respectively, the sample proportion and sample variance estimates from stra-
tum h.

Then, an estimate of the frame proportion pystr is given by

p̂ystr =

H∑
h=1

Nh
N
p̂yh =

H∑
h=1

Php̂yh . (4.15)

The sampling variance of p̂ystr is given by

Var(p̂ystr ) ≈
H∑
h=1

P 2
h

1

nh
(1− fh)σ2

h, (4.16)

where fh = nh

Nh
, the sampling fraction in stratum h, and

σ2
h =

1

Nh

Nh∑
i=1

(yih − pyh)2 = pyh(1− pyh), (4.17)

i.e., the variance of stratum h in the frame.

And, an unbiased estimator of Var(p̂ystr ) is given by

V̂ar(p̂ystr ) =

H∑
h=1

P 2
h (1− fh)

p̂yh(1− p̂yh)

nh − 1
. (4.18)
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4.6 Variance Comparison

Let assume that for all of these stratified sampling schemes nh << NH for all
h so the 1− fh ≈ 1; thus, we can ignore it. Then, sampling theory shows that
the sampling variance of x̄ for each of these allocation schemes is given by:

1. Equal allocation (eq)

Var(x̄eq) =
H

n

H∑
h=1

P 2
h σ

2
h (4.19)

2. Proportional Allocation (pr)

Var(x̄pr) =
1

n

H∑
h=1

Ph σ
2
h (4.20)

3. Optimal Allocation (op)

Var(x̄op) =
1

n

(
H∑
h=1

Ph σh

)2

(4.21)

4.6.1 Proportional Allocation vs SRS

To show when stratified sampling is a better scheme than SRS, we need an
expression of the variance in the frame. Sampling theory shows that:

σ2
x =

1

N

H∑
h=1

Nh∑
i=1

(xih − µx)2

=

H∑
h=1

Ph σ
2
h +

H∑
h=1

Ph(µh − µx)2 (4.22)

Definition 19: Within strata variance.

σ2
w ≡

H∑
h=1

Ph σ
2
h (4.23)

this is known as the weighted average variance within strata.

Definition 20: Between strata variance.

σ2
b ≡

H∑
h=1

Ph(µh − µx)2) (4.24)

this is known as the variance between strata.
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Thus, we see that the total variance is

σ2
x = σ2

w + σ2
b . (4.25)

An important result is that proportional stratified sampling is as precise or more
than a single SRS of the same total sample size n; i.e., that

Var(x̄pr) ≤ Var(x̄srs), (4.26)

because

Var(x̄srs)−Var(x̄pr) =
1

n

(
H∑
h=1

Ph σ
2
h +

H∑
h=1

Ph(µh − µx)2

)
− 1

n

H∑
h=1

Ph σ
2
h

=
1

n

H∑
h=1

Ph(µh − µx)2 ≥ 0; (4.27)

i.e., Var(x̄srs) − Var(x̄pr) = σ2
b/n ≥ 0. This result implies that the more het-

erogeneous the strata are (in terms of strata means), the better proportional
sampling will be. Which also implies that when we select a stratification vari-
able, we should to select one that is strongly correlated with our variable of
interest.

4.6.2 Proportional Allocation vs Optimal Allocation

Definition 21: Average within strata standard deviation.

σ̄w ≡
H∑
h=1

Ph σh, (4.28)

this is known as the average within strata standard deviation.

Now, the advantage of optimal allocation over proportional allocation can be
seen with the following result:

Var(x̄pr)−Var(x̄op) =
1

n

H∑
h=1

Ph σ
2
h −

1

n

(
H∑
h=1

Ph σh

)2

=
1

n

H∑
h=1

Ph(σh − σ̄w)2 ≥ 0 (4.29)

Thus, we obtain more precision from optimal allocation than with proportional
allocation when there is high variability between strata. But in practice, usually,
the gain by switching from SRS to proportional allocation is much bigger than
by switching from proportional allocation to optimal allocation.
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4.7 Replicated Stratified Sampling

In section 3.5 we introduced replicated sampling, as a technique that could be
used with different sampling designs. Replicated sampling is based on g ≥ 2
independent sub-samples, in which each sub-sample provides valid information
from a frame. Now, we suppose that each stratum is divided into g independent
sub-samples of size mh, where

∑
mh = nh and g×mh = nh. Then, an unbiased

estimator of the mean of stratum h, µh, based on the g subsamples is given by

µ̂h =
1

g

g∑
i=1

x̄hi, for h = 1 : H, (4.30)

where x̄hi =
∑mh

j=1 xhij/mh, for i = 1 : g is the mean ofXh in each sub-sample.

An unbiased estimator of the sampling variance of µ̂h in stratum h, is given by

V̂ar(µ̂h) =
1

g(g − 1)

g∑
i=1

(x̄hi − µ̂h)2 (4.31)

Then, an unbiased estimator of µx in the frame, based on the g sub-samples for
the H strata is obtained by

µ̂str =
1

H

H∑
h=1

g∑
i=1

x̄hi, (4.32)

whose sampling variance is estimated by

V̂ar(µ̂str) =
1

g(g − 1)

H∑
h=1

g∑
i=1

(x̄hi − µ̂str)2. (4.33)

Alternatively, we could obtain an estimate of µh for the H strata, based on the
g independent samples, as

µ̂i =

H∑
h=1

x̄hi for i = 1 : g, (4.34)

Hence, a combined estimator for µstr is the mean of the g estimates µ̂i, with an
unbiased estimator of the sampling variance simply given by

V̂ar(µ̂str) =
1

g(g − 1)

g∑
i=1

(µ̂i − µ̂str)2. (4.35)

And, as we pointed out in Section 3.5, if g = 2, then

V̂ar(µ̂str) =
1

4
(µ̂1 − µ̂2)2. (4.36)
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4.8 A Limitation of Stratified Sampling

Not everything goes in favor of stratified sampling. It has the limitation that,
in optimal allocation, we need to know the strata variances in order to obtain
the sample sizes for each stratum, which could be problematic. However, for
proportional sampling, we only need to know the fraction of units falling into
each stratum. This information is much more readily available or at least, easier
to approximate.

Related to this, is the estimation of standard errors. As the strata variances
usually are not available, we need to estimate them using the sample variance
of each stratum; i.e.,

V̂ar(x̄str) ≡ s2
x̄str

=

H∑
h=1

Ph
1

nh
(1− fh) s2

h (4.37)

Whose corresponding confidence limits for µx are obtained by

x̄str ± tν · sx̄str
.

Exercises

1. The following table present some results of a survey of farms in a country,
stratified by size. The variable of interest was the yield per acre of certain
product.

Table 4.1: Yield in a Stratified Sample of Farms

SMALL MEDIUM LARGE
Nh 140 112 28
Ph 0.5 0.4 0.1
nh 20 16 4
x̄h 30 25 20
s2
h 36 150 90

• Can you determine the stratified design used in the study?

• What is the total number of farms in the country (frame)?

• What is the total number of farms in the sample?

• Obtain an estimate of the:

1. mean yield for the country (x̄str);
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2. variance of mean yield for the country (s2
x̄str

);

3. 95% limits for the mean yield, µstr, in the country.

• Obtain an estimate of the:

1. total yield for the country (τ̂xstr );

2. variance of the total yield for the country
(
s2
τ̂xstr

)
;

3. 95% limits for the total yield, τstr, in the country.

2. Suppose that we have a deck of N = 52 cards, with four denominations called:
Spade, Club, Diamond, Heart. The first two denominations are black, the others
are red; each denomination contains the following cards: A, 2, 3, . . . , 10, J,Q,K.
Let suppose that this deck of cards represents an institution which has N = 52
employees; furthermore, that the institution has four departments, each of 13
employees. Let X represent an employee’s years of experience, where A = 1,
J = 11, Q = 12, and K = 13 years of experience; the rest of the numbered cards
represents an employee’s years of experience, i.e., X = 1, 2, . . . , 13. Also, a red
card represents a female employee and a black card represents a male employee.

• Obtain µx and σ2
x. Hints:

1 + 2 + · · ·+ n = n(n+ 1)/2

11 + 22 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6.

• Divide the frame by department, i.e., into four strata; obtain µh and σ2
h,

for h = 1 : 4.

1. Using proportional allocation, obtain σ2
w, σ2

b and thus, σ2
x.

2. What is the gain from such stratification scheme as compared with
no stratification; i.e., obtain

Var(x̄srs)−Var(x̄pr)?

• Divide the frame by sex, i.e., into two strata; obtain µh and σ2
h, for h =

1, 2.

• Obtain µx and σ2
x.

1. Using proportional allocation, obtain σ2
w, σ2

b and thus, σ2
x.

2. What is the gain from such stratification scheme as compared with
no stratification; i.e., obtain

Var(x̄srs)−Var(x̄pr)?
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3. Suppose that you are assigned a task of selecting a sample of employees from
an agency that has N = 3, 000 employees; N1 = 1, 200 belong to Division One,
and N2 = 1, 800 belong to Division Two. The purpose is to estimate various
parameters related to years of experience. The proposed sampling plan is to
randomly select a sample of n = 250 employees.

• Explain how you would select the sample if you use proportional allocation;

• Explain how you would select the sample if you use equal allocation;

• Explain how you would select the sample if you use optimal allocation,
where σ1 = 5 and σ2 = 1.

4. Suppose that you are assigned a task of selecting a sample of units of a
product from a lot that has N = 1, 000 units. The lot has N1 = 300 units
identified from Shift One; the rest are from Shift Two. The purpose is to
estimate the proportion pd of defective units in the lot. The proposed sampling
plan is to randomly select a sample of n = 50 units.

• Explain how you would select the sample if you use proportional allocation;

• Explain how you would select the sample if you use equal allocation;

• Explain how you would select the sample if you use optimal allocation,
where σp1 = 0.5 and σp2 = 0.09.
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Chapter 5

Introduction to Clustered
Sampling

It seems to me that the prime requirement for a teacher is to possess some
knowledge to teach. He who does no research possesses no knowledge and
has nothing to teach. Of course, some people that do good research are
also good teachers. This is a fine combination, and one to be thankful for,
but not to expect. Two of the poorest teachers that I ever had . . . were
Professor Ernest Brown in mathematics at Yale and Sir Ronald Fisher at
University College in London. Sir Ernest will be known for centuries for
his work on lunar theory, and Sir Ronald for revolutionizing man’s method
of inference. People came from over the world to listen to their impossible
teaching, and to learn from them, and learn they did. I would not trade
my good luck to have had these men as teachers for hundred of lectures by
lesser men but “good teachers.” . . . .a

aW Edwards Deming; 1972. Letter to the Editor, The American Statistician. Volume
26.

5.1 Introduction

In clustered sampling the units sampled are chosen from mutually exclusive
groups, known as clusters, in which the units are generally close to each other.
Examples are households in a block, or successive items off a production line.
Sample selection is made hierarchically, using at least two stages: First, the
sampling frame is divided into a large number (M) of clusters, and a sample
of m ≤ M of these clusters are randomly selected. Then, within each of the
m selected clusters, n sampling units are chosen by simple random sampling
or some other sampling technique. Ideally, the chosen clusters should have
dissimilar sampling units (i.e. within cluster heterogenuity) so that the sample

49
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of clusters is as representative as possible of the whole sampling frame. In
practice, however, this is not generally true, and that is why we tend to select
a large number of clusters in the first stage, followed by a small number of
sampling units in the second stage.

It is generally expensive to spread out our sample across the frame as a whole.
For example, travel can become expensive if we are using interviewers or enu-
merators to travel all over a region or a country. To reduce costs we may choose
a clustered sampling technique. It could also happen that we do not have an
exhaustive list of the sampling units of interest, e.g., people or families, but we
do have a list of household blocks from a map. Then, necessarily, we have to
select blocks in the first stage of sampling and then, select a random sample of
households from the chosen blocks. Other examples of clusters may be farms,
schools, hospitals, and other geographic areas.

We remark that only sampling units from randomly selected clusters are in-
cluded in the sample. Thus, units from non-selected groups are represented by
those from the selected clusters. Notice also, that clustered sampling differs
from a stratified sampling design, where sampling units are selected from each
group or stratum; thus, the selected sampling units represent all strata in the
frame.

5.2 Some Advantages of Clustered Sampling

Clustered sampling offers several advantages, some of which are the following:

• Reduced costs by saving of travelling time by supervisors and enumerators;

• Administrative convenience and simplified field work;

• Useful in surveying employees in a particular industry or patients in hos-
pitals;

• Instead of having a sample scattered over the entire coverage area, the
sample is more localized in relatively few groups or clusters;

• Only a listing of sampling units in the selected clusters is needed and not
of all units in the whole frame.

5.2.1 Some Disadvantages of Clustered Sampling

On the other hand, clustered sampling offers several disadvantages, some of
which are the following:

• Generally, less accurate results are often obtained from clustered sampling,
due to higher sampling error, than in simple random sampling;
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• Sampling units close to each other may be very similar and thus, less
likely to represent the whole frame; e.g., units within the same cluster do
not possess independent information (known as the “intra-class (cluster)
correlation”);

• Decrease in sampling efficiency with increase in cluster size, although the
loss in sampling efficiency is often compensated by cost reduction.

5.3 Two-Stage Clustered Sampling

In order to illustrate two-stage clustered sampling estimation, we will make use
of the next table1:

Table 5.1: Some Formulas in Two-Stage Clustered Sampling

Frame Sample
Primary Units (PUs) M m

Sampling Units (SUs) in PUi Ni ni
All Sampling Units N =

∑M
i=1Ni n =

∑m
i=1 ni

Mean SUs per PU N̄ = N/M n̄ = n/m
X-Value in PUi of SUj Xij ; j = 1 : Ni xij ; j = 1 : ni

Total of X-Value on PUi
∑Ni

j=1Xij

∑ni

j=1 xij

Total of X-Value on all PUs
∑M
i=1

∑Ni

j=1Xij

∑m
i=1

∑ni

j=1 xij

Mean per SU in PUi µi = 1
Ni

∑Ni

j=1Xij x̄i = 1
ni

∑ni

j=1 xij

Mean Per SU µx = 1
N

∑M
i=1

∑Ni

j=1Xij x̄ = 1
n

∑m
i=1

∑ni

j=1 xij

Variance Between SUs σ2
b = 1

MN̄

∑M
i=1Ni(µi − µx)2 s2

b = 1
mn̄

∑m
i=1 ni(x̄i − x̄)2

Variance per SU within PUi σ2
i = 1

Ni

∑Ni

j=1(Xij − µi)2 s2
i = 1

ni

∑ni

j=1(xij − x̄i)2

Mean Within SU Variance σ2
w = 1

N

∑M
i=1Ni σ

2
i s2

w = 1
n

∑m
i=1 ni s

2
i

Total Variance σ2
x = σ2

b + σ2
w s2

x = s2
b + s2

w

5.3.1 Two-Stage Cluster Sample Using R

Suppose that we have a sampling frame of M PUs, and N̄ SUs. Furthermore,
suppose that we want to sample m ≤ M PUs in the first stage, and n̄ SUs in
the second stage.

A very simple R function that helps us to implement this clustered sampling
procedure is the following:

1Cf. W Edwards Deming; 1950, 1986. Some Theory of Sampling. New York: Wiley,
Dover, Pages 142-145.
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# Cluster Sample Using R

cluster.sample=function(M = 100, m = 20, Nbar = 10, nbar = 5){
cl.samp = sample(1:M, m)

s.samp = NULL

for (i in 1:m){
su.sampl = sample(1:Nbar, nbar)

s.samp = c(s.samp, su.sampl)

}
samp = c(cl.samp,s.samp)

cat("Your Clustered Sample is :", return(samp), "\n")
}

Then for example, to obtain our desired clustered sample using the R program,
we type the command:
cluster.sample(100, 20, 10, 5).

Notice that this function returns as output our sampled PUs, followed by the
corresponding sample of SUs.

A perhaps better alternative R function is the following:
# Cluster Sample Using R

cluster.sample = function(M = 100, m = 20, Nbar = 10, nbar = 5){
s.samp = NULL

for (i in 1:m){
cl.sampl = sample(1:M, 1)

su.sampl = sample(1:Nbar, nbar)

s.samp = c(s.samp,cl.sampl, sort(su.sampl))

}
samp = s.samp

cat("Your Clustered Sample is :", return(samp), "\n")
}

This function returns as output each sampled PU, followed by a corresponding
sorted sample of SUs, which is easier to read.

5.3.2 Examples of Two-Stage Clustered Sampling

As illustration of two-stage clustered sampling, we present the following exam-
ples, as obtained from the internet.

• Clustered sampling in an education study2— A good example where the
country was first stratified by region and area; then, a sample of schools
was selected in stage one, and a sample of school sections was selected for
testing in stage two.

2E Puhakka; 1999. Application of Two Stage Cluster Sampling in Finnish Data of IEA
Civic Education Study
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• An assessment of an immunization coverage3— This is known as the 30×7
WHO Sample. Here, a random sample of “sites” (clusters) are selected
from geographical areas of a country in stage one. Then, a selection of
seven individuals from the appropriate age class within each selected site
are non-randomly chosen in stage two.

• Compact segment sampling, to estimate vaccination coverage4 — In order
to correct the selection bias induced by the second stage of the 30 × 7
WHO Sample, the clusters are divided into households segments and a
sample of segments are randomly chosen and investigated completely.

5.4 Two-Stage Cluster Sampling Estimation

Assume that we have a frame which is made of M mutually exclusive clusters,
and that we want to randomly select a sample of m of them using srswor in a
first stage. Then, in a second stage we randomly select a sample of n̄ out of N̄
sampling units, also using srswor from the selected clusters in the first stage.

Let xij be the X-value of the measure of interest from the jth sampling unit from
the ith selected cluster. And let x̄i be the sample mean from the ith selected
cluster (see Table 5.1 above). Then, an unbiased estimator of µx obtained by
cluster sampling, is given by

µ̂clu =
1

mn̄

m∑
i=1

n̄∑
j=1

xij , (5.1)

The sampling variance of µ̂clu is then given by

Var(µ̂clu) ≈ (1− f1)
σ2
b

m
+ (1− f2)

σ2
w

mn̄
(5.2)

where f1 = m/M , for stage one sampling, f2 = n̄/N̄ , for stage two sampling,
and σ2

x = σ2
b + σ2

w.

5.4.1 Frame Total Estimation

Assume that we have a sample of m randomly selected clusters and within each
selected cluster, we select n̄ sampling units. Furthermore, we want to estimate
the total of X in the frame, τx. Then an estimator of this total will be given by

τ̂x =
M

m

m∑
i=1

N̄

n̄

n̄∑
j=1

xij , (5.3)

3RH Henderson & T Sundaresan; 1982. Cluster sampling to assess immunization cover-
age: review of experience with a simplified sampling method. Bulletin of the World Health
Organization. Vol. 6, No.2: 353–260.

4P Milligan, A Njie and S Bennett; 2004. Comparison of two cluster sampling methods for
health surveys in developing countries. International Journal of Epidemiology. Vol. 33:18.
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whose sampling variance is given by

Var(τ̂x) =
M2

m
(1− f1)σ2

b +
M

m

M∑
i=1

N̄2

n̄
(1− f2)σ2

w. (5.4)

An estimator of Var(τ̂x) is obtained substituting σ2
b by s2

b , and σ2
w by s2

w, as
given in Table 5.1, above.

5.5 Clustered Sampling Allocation

We now introduce a simplified cost function, where we assume an overhead cost
c0, a cost of including an additional PSU in stage one, given as c1, and the cost
per sampling unit examine in stage two, given as c2; i.e., the total cost is given
as:

c = c0 + c1m+ c2n

= c0 + c1m+ c2mn̄, (5.5)

where we assume that n = mn̄. The sampling variance of µ̂clu was then given
in section 5.4 as

Var(µ̂clu) ≈ (1− f1)
σ2
b

m
+ (1− f2)

σ2
w

mn̄
. (5.6)

Suppose that we want find the values of m an n̄ that minimize Var(µ̂clu). From
sampling theory, assuming that n̄ << N̄ using calculus, it can be shown that

n̄ =
σw
σb

√
c1
c2

(5.7)

For example, suppose that from a previous study, we know that σw = 1.5 and
σb = 0.20. Also, suppose that c1 = 80 and c2 = 30; then,

n̄ =
1.5

0.2

√
80

30
≈ 12, (5.8)

i.e., 12 sampling units will examined in stage two.

Furthermore, suppose that we have $30,000.00 to carry out our study. Then,

c1m+ c2mn̄ = $30, 000

80m+ 30m (12) = $30, 000 (5.9)

Then, 440m = 30, 000 or m ≈ 68 clusters will be taken in stage one, and thus,
the total sample size will be n = 68× 12 = 816.
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5.5.1 Clustered Sampling Allocation With R

Suppose that we want to obtain the number of clusters, m, in the first stage and
the average number of sampling units, n̄, in the second stage, assuming certain
values for: σw, σb, marginal cost in stage one, c1, and c1, the marginal cost of
stage two; furthermore, we assume a field study budget, B.

A very simple R program is given below:
sample.alloc = function(sigma.w = 1.0, sigma.b = 0.1, c1 = 160, c2

= 40, B = 48000){
n.bar = round(sigma.w/sigma.b*sqrt(c1/c2),0)

m = round(B/(c1+c2*n.bar),0)

n = round(m*n.bar,0)

clusters = data.frame(m, n.bar, n)

cat("Clustered allocation is:", return(clusters), "\n")
}
Then for example, to obtain the desired result, type the command:
sample.alloc(1.0, 0.1, 160, 40, 48000).

5.6 PPS Clustered Sampling

In this type of clustered sampling, primary sampling units (clusters) are se-
lected according to their differing number of sampling units; i.e., with proba-
bility proportionate to size (PPS). Then, necessarily clusters are sampled with
replacement, which implies that a cluster can appear more than once in the list
of selected clusters.

Let m be the number of clusters randomly selected with PPS in stage one.
Then, within each selected cluster, we randomly select ni sampling units out of
the Ni, with probability

πi =
Ni∑M
i=1Ni

=
Ni
N
, for i = 1 : M. (5.10)

Now, the Hansen-Hurwitz estimator (HH), for the total τx is given by5

τ̂HH =
M

m

m∑
i=1

N

Ni

ni∑
j=1

xij (5.11)

Then, an HH estimator of µx is given by

µ̂HH =
1

N

M

m

m∑
i=1

N

Ni

ni∑
j=1

xij/ni. (5.12)

5Hansen MM and WN Hurwitz; 1943. On the theory of sampling from finite populations.
Annals of Mathematical Statistics. Vol. 14, pages 333–362.
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And an estimator of Var(τ̂HH) is

V̂ar(τ̂HH) =
N2

m(m− 1)

m∑
i=1

(x̄i − µ̂HH)2. (5.13)

An alternative PPS estimator for the total τx, known as the Horvitz-Thompson
estimator (HT ), is obtained by6

τ̂HT =

ν∑
i=1

xi
πi

(5.14)

where ν is the number of distinct primary units in the sample, known also as
the effective sample size.

The variance of this estimator is much elaborate; for more detail, see for exam-
ple, the book titled Sampling, 2nd Edition by SK Thompson, Section 6.2, pages
53–56.7

5.6.1 Sample Selection Procedure

Suppose that we have M clusters and we want to select m of them with PPS.
Assume that the the clustered frame has been arraigned as it appears in Table
5.2, below.

Table 5.2: Frame of Primary Sampling Units: PPS Selection

PSU Ni
∑
Ni

1 N1 N1

2 N2

∑2
i=1Ni

3 N3

∑3
i=1Ni

...
...

...

M − 1 NM−1

∑M−1
i=1 Ni

M NM N

Then, we select m random sampling numbers (ri, for i = 1 : m), with replace-
ment between 1 and N . The cluster selection is then made using the procedure
that appears in Table 5.3, bellow.

We notice that since since the selection is based on PPS, a cluster can be
selected more than once; i.e., the selection of clusters is with replacement. In

6Horvitz DG and DJ Thompson; 1952. A generalization of sampling without replacement
from a finite universe. Journal of the American Statistical Association, Vol. 47, pages 663–685.

7See also, Särndal CE, B Sweenson, and J Wretman; 1992. Model Assisted Survey Sam-
pling. New York: Springer-Verlag.
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Table 5.3: Cluster Selection Guide

Random No. Is Select Cluster No.
ri ≤ N1 1

N1 < ri ≤
∑2
i=1Ni 2∑2

i=1Ni < ri ≤
∑3
i=1Ni 3

...
...∑M−1

i=1 Ni < ri ≤ N M

practice, we usually make a systematic selection of clusters in the first stage. A
better procedure is to make replicated cluster selections, with different random
starts.

5.6.2 A PPS Sample Selection Example

Suppose that a region is made of 15 municipalities where there are Ni families;
for (i = 1 : 15). We want to select 10 municipalities, based on PPS, and 20
families from each selected municipality (i.e., a sample of n = 200) families.
Thus, assume that the region is distributed as in Table 5.4, bellow.

Table 5.4: Frame of Families Per Municipality: PPS Selection

Munic. Ni
∑
Ni Munic. Ni

∑
Ni Munic. Ni

∑
Ni

1 800 800 6 600 6400 11 600 11600
2 1200 2000 7 500 6900 12 800 12400
3 400 2400 8 1200 8100 13 400 12800
4 2000 4400 9 500 8600 14 900 13700
5 1400 5800 10 2400 11000 15 1300 15000

5.6.3 A PPS Sample Selection Using R

Suppose that we want to randomly select a sample of m clusters by the PPS
procedure. Using program R, we create the following simple function:
sample.pps = function(N = 1:15000, m = 10)){
samp = sort(sample(N, m, replace = TRUE))

cat("The m selected clusters are: ", return(samp), "\n")
}
Suppose that we type the command:
sample.pps(1:15000, 10)
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If for example, we obtain the following result:
2071 2761 5243 6647 7603 7717 8495 12449 13555 13930,
then, we select municipalities numbered: 3, 4, 5, 7, 8, 8, 9, 13, 14, 15. Thus, in
our sample, municipality number eight (8) appears twice, so we would select
40 families from it, and 20 families from the each of the other eight selected
municipalities.

Exercises

1. Suppose that a book of N = 500 pages will be examined in order to estimate
the total number of errors. For our purpose, we will randomly select a sample
of n = 30 pages. The book is divided into M = 100 consecutive clusters, each
of them has N̄ = 5 pages.

• Explain how you would select the sample if you use clustered sampling
and m = 6;

• Explain how you would select the sample if you use clustered sampling
and m = 15;

• Explain how you would select the sample if you use clustered sampling
and m = 30.

2. Suppose that you are assigned a task of selecting a sample of employees
from an agency that has N = 3, 000 employees. The purpose is to estimate
various parameters related to years of experience. The proposed sampling plan
is to randomly select a sample of n = 250 employees. The frame is divided into
M = 300 consecutive clusters, each of them has N̄ = 10 employees.

• Explain how you would select the sample if you use clustered sampling
and m = 25;

• Explain how you would select the sample if you use clustered sampling
and m = 50;

• Explain how you would select the sample if you use clustered sampling
and m = 125.

3. Suppose that you are assigned a task of selecting a sample of units of a
product from a lot that has N = 1, 000 units. The purpose is to estimate the
proportion pd of defective units in the lot. The proposed sampling plan is to
randomly select a sample of n = 50 units. The lot is divided into M = 200
consecutive clusters, each of them has N̄ = 50 units.

• Explain how you would select the sample if you use clustered sampling
and m = 10;
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• Explain how you would select the sample if you use clustered sampling
and m = 25;

• Explain how you would select the sample if you use clustered sampling
and m = 50.

4. Suppose that you are assigned a task of selecting a sample of list of patients
from a hospital that has N = 5, 000 patients. The purpose is to estimate health
cost per patient. The proposed sampling plan is to randomly select a sample of
n = 150 patients. The list is divided into M = 500 consecutive clusters, each of
them has N̄ = 10 patients.

• Explain how you would select the sample if you use clustered sampling
and m = 25;

• Explain how you would select the sample if you use clustered sampling
and m = 75;

• Explain how you would select the sample if you use clustered sampling
and m = 150.

5. Suppose that we will perform a study of patients from certain disease A
in hospitals in a country. Assume that we will visit m hospitals to study n̄
hospital records in order to estimate the prevalence of patients with condition A.
Furthermore, we assume that the average cost c1 = $160 to bring an additional
hospital into the sample, which include visiting the hospital’s director to describe
the purpose of the study, coordinate with the supervisor who will assist the
enumerators, and to study the hospital records. The marginal cost c2 = $40
will be mainly that of studying hospital records to decide whether the patient
is a case of condition A and to carry the fieldwork. From a similar study, we
take σw = 1.0 and σb = 0.10.

• Calculate the corresponding number of records per hospital, n̄;

• If the budget for this study is $48, 000.00, what will be the needed number
of hospitals, m?

• What will be the total number of records, n?

6. Using the data from the example of municipalities above, select ten of them
by PPS:

• Using linear systematic sampling;

• Using circular systematic sampling;

• Using replicated sampling with two sub-samples;
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Chapter 6

Introduction to Ratio and
Regression Estimation

Limitations of Statistical Inference. All results are conditional on (a) the
frame whence came units for test; (b) the method of investigation (the
questionnaire or test-method and how it was used); (c) the people that
carry out the interviews or measurements. In addition (d), the results of
an analytic study are conditional on certain environmental states . . . The
exact environmental conditions for any experiment will never be seen again
. . . The gap beyond statistical inference can be filled only by knowledge of
the subject-matter (economics, medicine, chemistry, engineering, psychol-
ogy, agricultural science, etc.), which may take the formality of a model.a

aW Edwards Deming; November, 1975. On Probability As a Basis For Action, The
American Statistician. Volume 29, No. 4, pp. 146–152.

The method of ratio estimation is a technique that uses available auxiliary
information which is correlated with the variable of interest. Suppose that
variable X is correlated with variable of interest Y ; furthermore, that we have
a paired random sample of n observations (xi, yi) for i = 1 : n. Then, a ratio
estimator of

R ≡ τy
τx

=
µy
µx
, (6.1)

is obtained as

r ≡
∑n
i=1 yi∑n
i=1 xi

=
ȳ

x̄
. (6.2)

We notice that an important characteristic of ratio estimation is that both, the
numerator and the denominator are random quantities.

The sampling variance of r is given by

Var(r) ≈ 1

µ2
x

(1− f)

∑N
i=1(yi −Rxi)2

nN
, (6.3)

61
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which is estimated as

V̂ar(r) ≈ 1

x̄2
(1− f)

∑n
i=1(yi − r xi)2

n(n− 1)
. (6.4)

Some example of ratio estimates are given in Table 6.1, below.

Suppose that we are interested in estimating the total, τy, of characteristic Y
in the frame and that we know the total, τx, of characteristic X. Then, a ratio
estimator of τy is given by

τ̂y = r τx (6.5)

From sampling theory, we know that the above ratio estimator is biased, and
that its bias, B(r), is given by

B(r) = R

(
Var(τ̂x)

τ2
x

− Cov(τ̂x, τ̂y)

τx τy

)
=

1

τ2
x

(RV(τ̂x)− Cov(τ̂x, τ̂y)) (6.6)

6.1 Ratio Estimation in SRS

From sampling theory, we also know that the sampling variance of τ̂y is given
by

Var(τ̂y) = Var(τ̂ysrs)− 2RCov(τ̂x, τ̂y) +R2 Var(τ̂x). (6.7)

Then, τ̂y is more efficient than τ̂ysrs when 2RCov(τ̂x, τ̂y) > R2 Var(τ̂x).

As we pointed out above, under SRS, an estimator of Var(r) is given by

V̂ar(r) =
1

x̄2

∑n
i=1(yi − r xi)2

n(n− 1)
(6.8)

Thus, the 95% limits for τy are obtained by

τ̂y ± tντxse(r), (6.9)

where se(r) is the square root of V̂ar(r).

6.1.1 Ratio Estimation Example

We want to estimate the proportion non-conforming py of certain item, which
comes in a ship of N = 1, 000 lots. We randomly select n = 10 lots, and classify
them by the number of units examined (X) and the number of non-conforming
units (Y ). Table 6.2, below, presents the results of our sample.

Using program R, we typed the following commands, with the corresponding
results:
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Table 6.1: Ratio Estimate Examples

X & Y Value Ratio (R =
τy
τx

=
µy

µx
)

X = Family Size
Y = Food Consumption R = Food Consumption per Capita

X = Number of dairy farms
Y = Milk Production R = Milk Production per Farm

X = Number of Hospitals
Y = Disease A Cases R = Disease A Cases per Hospital

X = Number of Children
Y = Number Immunized R = Proportion Immunized Children

X = Number of Families
Y = Number Under Puberty Level R = Proportion Under Puberty Level

X = Labor Force Size
Y = Number Unemployed R = Unemployment Rate

X = Cell Phones : 2000
Y = Cell Phones : 2005 R = Increase Rate

X = Acreage Planted
Y = Production (tons) R = Yield Per Acre

X = Number of Drinks
Y = Blood Alcohol Content R = BloodAlcoholContent Per Drink

X = Speed (MPH)
Y = Distance Traveled (Miles) R = Distance Per Speed

X = Man− hours
Y = Number of Items Processed R = Productivity Rate
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Table 6.2: Item Classification By Lot

Lot xi yi Lot xi yi
1 20 4 6 20 4
2 20 2 7 40 7
3 30 5 8 30 5
4 25 4 9 10 1
5 15 2 10 20 3

x = scan()

20 20 30 25 15 20 40 30 10 20

y = scan()

4 2 5 4 2 4 7 5 1 3

plot(x,y)

n = length(x)

r = sum(y)/sum(x)

r

0.1608696

var.r = 1/mean(x)^ 2*sum(y-r*x)^ 2/(n*(n-1))

var.r

4.566893e-34

se.r = sqrt(var.r)

se.r

2.137029e-17

This means that our estimate of the proportion non-conforming is 16.1%. Then,
the 95% limits for the proportion non-conforming in the shipment are obtained
as:

r ± tνse(r), (6.10)

Thus, in our example, we obtain the following, using program R:
r - qt(0.975, n-1)*se.r

0.1608696

r + qt(0.975, n-1)*se.r

0.1608696,
which, apparently in this case, do not change from the estimate r, because the
margin of sampling error is very small.

N.B. In the statistical quality control literature, the corresponding estimate for
the proportion non-conforming is usually expressed as p̄ =

∑
y/n̄, where n̄ is

the average sample size (x̄ in our case). And the corresponding (three sigma)
limits are given by

p̄± 3

√
p̄(1− p̄)

n̄
. (6.11)
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We notice that these estimators have the limitation that the sample size (x in
our case) is not fixed, but a random variable.

6.2 Ratio Estimation in Stratified Sampling

Under a stratified sampling scheme, where we have H strata, the method of
ratio estimation can be used in two ways, known as combined and separate
ratio estimation.

6.2.1 Combined Ratio Estimation

Suppose that µ̂xstr
and µ̂ystr are the estimators of µx and µy, respectively, under

stratified sampling. Here, as the term indicates, we obtain a ratio estimator
given by

rc.str =
τ̂ystr
τ̂xstr

, (6.12)

where

τ̂ystr =

H∑
h=1

Nh
nh

nh∑
i=1

yhi, (6.13)

and

τ̂xstr =

H∑
h=1

Nh
nh

nh∑
i=1

xhi. (6.14)

The sampling variance of rc.str is given by

Var(rc.str) ≈
1

τ2
x

H∑
h=1

(1− fh)
N2
h

nh
σ2
h. (6.15)

Now,
σ2
h = σ2

yh
+Rσ2

xh
− 2RCov(xh, yh), (6.16)

where σxh
and σyh are the corresponding within stratum standard deviations of

X and Y .

An estimator of Var(rc.str) is given by

V̂ar(rc.str) ≈
1

τ̂2
x

H∑
h=1

(1− fh)
N2
h

nh
s2
h. (6.17)

where these estimators are obtained by the corresponding sample values; e.g.,

s2
xh

=

∑nh

i=1(xhi − x̄h)2

nh − 1
, forh = 1 : H. (6.18)
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6.2.2 Separate Ratio Estimation

Assume that we know the total of variable X for each stratum, τxh
, and thus

the total of variable X in the frame, τx =
∑H
h=1 τxh

. Also, suppose that for
each stratum h, we obtain a ratio estimator

rh =

∑nh

i=1 yih∑nh

i=1 xih
, for h = 1 : H. (6.19)

Then, the total of variable Y in stratum h is estimated as

τ̂yh = rh τxh
, for h = 1 : H. (6.20)

Then an estimate of R in the frame is obtained by

rs.str =
1

τx

H∑
h=1

rh τxh
, (6.21)

whose sampling variance is given by

Var(rs.str) ≈
1

τ2
x

H∑
h=1

(1− fh)τ2
xh

Var( rh) (6.22)

where τ2
xh

Var( rh) is the within stratum h variance of the ratio estimated total
τ̂yh . An estimator of Var(rh) is given by

V̂ar(rh) =
1

x̄2
h

∑nh

i=1(yhi − rh xhi)2

nh(nh − 1)
(6.23)

Therefore, an estimate of the total of variable Y in the frame, τy, is

τ̂ys.str =
H∑
h=1

τ̂yh =
H∑
h=1

rh τxh
. (6.24)

whose estimated variance is

V̂ar(τ̂s.str) ≈
H∑
h=1

(1− fh)τ2
xh

V̂ar( rh) (6.25)

6.3 Introduction to Regression Estimation

When the auxiliary variable X is a predetermined (non-random) variable, we
can obtain an alternative estimator to the ratio estimator. It is based on the
concept of least squared method and it is known as regression estimation.
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6.3.1 Regression Trough The Origin, RTO

Assuming that the relation between X and Y is

yi = βxi + εi, for i = 1 : n, (6.26)

for the paired observations (xi, yi), the regression estimator of β is given as1

b =

∑n
i=1 xiyi∑n
i=1 x

2
i

=

(
n∑
i=1

x2
i

)−1 n∑
i=1

xiyi. (6.27)

The variance of Y , σ2
y, is known as the mean square error (MSE), and is esti-

mated as

MSE ≡ σ̂2
y =

∑n
i=1(yi − b xi)2

n− 1
(6.28)

An estimator of the variance of b is then given by2

V̂ar(b) =
MSE∑n
i=1 x

2
i

= σ̂2
y

(
n∑
i=1

x2
i

)−1

. (6.29)

Therefore, using RTO estimation, an estimator for the mean of Y in the frame
is obtained as

µ̂yreg = b µx. (6.30)

The confidence limits for µyreg are obtained by

µ̂yreg ± tν
√

V̂ar(b) µx, (6.31)

here, the degrees of freedom are ν = n− 1. Similarly, an estimator for the total
of Y in the frame is obtained as

τ̂yreg = b τx (6.32)

An estimator of the variance of τ̂yreg is

V̂ar(τ̂yreg ) = τ2
x

∑n
i=1(yi − b xi)2

n(n− 1)
∑n
i=1 x

2
i

. (6.33)

The confidence limits for τyreg are obtained by

τ̂yreg ± tν
√

V̂ar(b) τx. (6.34)

And, in case that τx is unknown, we use τ̂x as its estimator in the above formulae.

1Notice the similarity between this expression and the multiple regression estimator, in
matrix notation, β̂ = (XtX)−1Xty.

2Cf. In multiple regression V̂ar(β̂) = σ̂2
y(XtX)−1.
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6.3.2 Simple Regression

More often, we study relationships between variables X and Y using the model

yi = β0 + β1xi + εi, for i = 1 : n; (6.35)

i.e., where their relationship not necessarily goes through the origin. In such
cases, we need to estimate both β0 and β1, using the least square method or
equivalently, maximum likelihood estimation.

Regression theory shows that the estimator for β1 is

b1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
. (6.36)

Now, the variance of b1 is estimated as

V̂ar(b1) =
MSE∑n

i=1(xi − x̄)2
(6.37)

where, now

MSE ≡ σ̂2
y =

∑n
i=1(yi − b0 − b1 xi))2

n− 2
(6.38)

The estimator for β0 is
b0 = ȳ + b1 x̄ (6.39)

Then, it can be shown that the mean of variable Y in the frame estimated by
linear regression is

µ̂yreg = ȳ + b1(µx − x̄); (6.40)

an estimator of the variance of µ̂yreg is given by

V̂ar(µ̂yreg ) = (1− f)

∑n
i=1(yi − b0 − b1 xi)2

n(n− 2)
. (6.41)

Therefore, the confidence limits for µyreg are obtained as

µ̂yreg ± tν
√

V̂ar(µ̂yreg ), (6.42)

now, the degrees of freedom are ν = n− 2.

An estimator of the total for variable Y in the frame is obtained as

τ̂yreg = N [ȳ + b1(µx − x̄)] ; (6.43)

an estimator of the variance of µ̂yreg is given by

V̂ar(τ̂yreg ) = N2(1− f)

∑n
i=1(yi − b0 − b1 xi)2

n(n− 2)
. (6.44)

Therefore, the confidence limits for µyreg are obtained as

τ̂yreg ± tν
√

V̂ar(τ̂yreg ), (6.45)
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6.3.3 Regression Estimation Using R

As general guidelines we recommend the following procedure:

• Perform RTO if there are theoretical reasons for regression through the
origin;

• Otherwise, perform linear regression and verify if b0 is statistically different
from zero;

• Then, if b0 is not statistically different from zero, perform RTO;

• Otherwise, perform linear regression (model yi = β0 + β1xi + εi).

Estimation of the regression line using program R is performed with the linear
model function, lm( ). If we want to perform linear regression (model yi =
β0 + β1xi + εi) we can type the following commands:
reg = lm(y ∼ x)

summary(reg)

If we want to perform RTO, we can obtain an estimate of β and related statistics
using program R, by the following commands:
reg = lm(y ∼ -1 + x)

summary(reg)

Notice that we have to put -1 after the tilde, ∼, to instruct R that we are
interested in performing RTO.

Exercises

1. We want to estimate the total number of certain cattle in a region for 2012.
The total number of cattle in 2011 was τx = 5, 000. The sampling unit was a
farm in the region; assume that the number of farms in the frame is N = 400. A
sample of n = 20 farms was randomly selected from the frame, and the following
results were obtained (see Table 6.3):

• Obtain an X,Y plot the results for the two years. Indicate your observa-
tions;

• Obtain the sample correlation coefficient between X and Y ;

• Obtain a ratio estimate ofR =
∑
Y/
∑
X, whereX represents the number

of cattle in 2011, and Y represents the number of cattle in 2012;

• Estimate the total number of this type of cattle in the region, τ̂y in 2012;

• Obtain an estimate of Var(r)

• Estimate the 95 % limits for τy in 2012.
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Table 6.3: Number of Certain Cattle in 2011 & 2012

Farm No. 2011 2012 Farm No. 2011 2012
1 10 15 11 9 13
2 25 30 12 15 20
3 35 40 13 11 11
4 10 13 14 20 25
5 10 13 15 15 15
6 30 25 16 25 30
7 15 17 17 9 11
8 20 22 18 15 14
9 9 11 19 12 15
10 25 30 20 20 22

Table 6.4: Supermarket Sales, By Type

Supermarkets Nh March Sales (Xh) April Sales (Yh)
Small 10 3, 5, 4, 4, 3, 2, 5, 1, 1, 4 5, 7, 4, 5, 5, 3, 5, 2, 2, 5

Medium 7 12, 9, 7, 10, 8, 7, 9 10, 9, 7, 7, 5, 6, 5
Large 3 20, 15, 17 18, 12, 15

2. Table 6.4 above, shows the supermarket sales ($000) in a city for two months:

• Obtain the frame ratio, R, of March-to-April sales;

• Randomly select a sample, where n1 = 3, n2 = 2, and n3 = 1;

• Using the selected sample obtain a combined ratio estimate rc.str;

• Obtain the variance Var(rc.str);

• Estimate the total τy for April;

• Estimate the 95% limits for τy for April.

3. Obtain for the problem:

• The ratio estimates for each stratum, and thus the estimator rs.str;

• The variance V̂ar(rh) for each stratum h.

• An estimate of the total τ̂ys.str and of τ̂ys.str

4. Using the data in Exercise 1, above:
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• Obtain a regression estimate of β, where X represents the number of cattle
in 2011, and Y represents the number of cattle in 2012;

• Estimate the total number of this type of cattle in the region, τ̂y in 2012;

• Obtain an estimate of Var(τ̂y)

• Estimate the 95 % limits for τy in 2012.

5. For the following data:
X 105 113 125 137 141 153 165 177 188 198
Y 45 63 86 118 112 169 201 237 263 268

• Plot the graph for (xi, yi);

• Perform ratio estimation;

• Perform linear regression and decide whether RTO is needed.

6. Suppose that we wan to estimate the yield of certain product in a field of
N = 100 plots. We randomly selected n = 4 plots and the amount of yield, yi of
each sampled plot was measured. It is known that the yield of a plot is related
with the amount of fertilizer, xi, applied to the plot, which is known for each
plot in the field. the data is:

X 50 100 150 200
Y 141 169 168 185

• Plot the graph for (xi, yi);

• Estimate the regression line and decide whether RTO is needed;

• Estimate the mean yield and its confidence limits;

• Estimate the total yield and its confidence limits.
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Chapter 7

The R Survey Package

Some remarks on the accuracy of an adjustment. A least squares
adjustment of sampling results must be regarded as a systematic procedure
for obtaining satisfaction on the conditions imposed, and at the same time
effecting an improvement of the data in the sense of obtaining results of a
smaller variance than the sample itself, under ideal conditions of sampling
from a stable universe. It must not be supposed that any or all of the
adjusted mij in any table are necessarily “closer to the truth” than the
corresponding sampling frequencies nij, even under ideal conditions. As
for standard errors of the adjusted results, they can easily be estimated
for the ideal case by making use of the calculated chi-square. For predictive
purposes, however (which can be regarded as the only possible use of a census
by any method, sample or complete), it is far preferable, in fact necessary, to
get some idea of errors of sampling by actual trial, such as by a comparison
of the sampling results with the universe, as can often be arranged by means
of controls. There is another aspect to the problem of error—even a 100 per
cent count, even though strictly accurate, is not itself useful for prediction,
except so far as we can assert on other grounds what secular changes are
taking place.a

aW Edwards Deming and Frederick F Stephan; 1940. On a least squares adjustment
of a sampling frequency table when the expected marginal totals are unknown. The
Annals of Mathematical Statistics, Vol. XI, No. 4, Page 444.

7.1 Introduction

The following notes introduce the R’s survey package. This package performs
several survey sampling analyses, including: summary statistics, maximum like-
lihood estimation for multistage, stratified, cluster-sampled, unequally weighted
samples. It also performs analysis of more complex survey samples, and several
graphics procedures. The survey package is design-based, i.e., in which survey
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statistics the population data are regarded as fixed and the randomness comes
entirely from the sampling procedure.

Some other R packages on sampling include: pps, sampling, and sampfling.
These packages also focus on design, in particular PPS sampling without re-
placement.

The survey package was developed by Professor Thomas Lumley of the Uni-
versity of Washington. Current R version is 3.29-5 (June 12, 2013); version 2.3
was discussed in the Journal of Statistical Software, Vol. 9, Issue 8, on April,
20041 2

Some of survey package features include:

• Describing survey designs: svydesign()

• Database-backed designs;

• Summary statistics: mean, total, quantiles, design effect;

• Tables of summary statistics, domain estimation;

• Contingency tables: svychisq(), svyloglin();

• Graphics: histograms, hexbin scatterplots, smoothers;

• Regression modelling: svyglm(), svyolr();

• Multiply-imputed data.

As indicated by Lumley, the survey package always uses formulas to specify
variables in a survey data set. Function svydesign() constructs an object
that specifies the strata, PSUs, sampling weights or probabilities, and finite
population correction for a survey sample. The resulting objects can be used
in the statistical functions whose names begin ‘svy’: svymean(), svyvar(),
svyquantile(), svytable(), and others. Standard errors are computed using
Taylor series linearization (where available).

7.2 Basic Estimation

As in previous chapters, individuals are randomly sampled with known proba-
bilities, πi, from a frame of size N to end up with a sample of size n. Let

Ii =

{
1 if individual i is sampled;
0 if individual i is not sampled.

The design-based inference problem is to estimate what any statistic of interest
would be if data from the whole frame were available.

1Available in the URL address, http://www.jstatsoft.org/v09/i08.
2For further information, visit the URL address, http://faculty.washington.edu/tlumley/survey/.

http://www.jstatsoft.org/v09/i08
http://faculty.washington.edu/tlumley/survey/


7.3. DESCRIBING SURVEYS TO R 75

For a population total this is easy: an unbiased estimator of

τy =

N∑
i=1

yi (7.1)

is

τ̂y =
∑
i:Ii=1

1

πi
yi (7.2)

Standard errors follow from formulas for the variance of a sum; the main com-
plication is that we need to know Cov(Ii, Ij).

7.3 Describing Surveys To R

We will focus on an example from the survey package: “Stratified independent
sample (without replacement) of California schools”. A measure of interest is
the ‘Academic Performance Index’, API, which is computedd for all Califor-
nia schools, based on standardized testing of students. Suppose that we have
a sample stratified by level of school (elementary, middle, high), in the data
frame apistrat. The variable snum identifies a school, stype is the level of
school, fpc is the number of schools in the stratum, and pw is the sampling
weights. The initial step is to define a survey design object containing the data
and metadata. Using the survey package, within program R:
library(survey)

data(api)

dstrat = svydesign(id=∼1,strata=∼stype, weights=∼pw, data=apistrat,

fpc=∼fpc)
where:

• stype is a factor variable for elementary/middle/high school;

• fpc is a numeric variable giving the number of schools in each stratum (if
omitted we assume sampling with replacement);

• id=~1 specifies independent sampling;

• apistrat is the data frame with all the data;

• pw contains sampling weights (1/πi).

These could be omitted since they can be computed from the population size.
Notice that all the variables are in the apistrat data frame, and are specified
as formulas.

We can then type the command:
dstrat

to obtain:
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Stratified Independent Sampling design

svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,

fpc = ~fpc)

And then, we type the command:
summary(dstrat)

to obtain:

Stratified Independent Sampling design

svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,

fpc = ~fpc)

Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.02262 0.02262 0.03587 0.04014 0.05339 0.06623

Stratum Sizes:

E H M

obs 100 50 50

design.PSU 100 50 50

actual.PSU 100 50 50

Population stratum sizes (PSUs):

E M H

4421 1018 755

Data variables:

[1] "cds" "stype" "name" "sname" "snum" "dname"

[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"

...

Now, we can estimate for example, the mean API performance score, the total
enrollment across California, typing the command:
svymean(∼api00+I(api00-api99), dstrat)

to obtain:

Mean SE

api00 662.287 9.4089

I(api00 - api99) 32.893 2.0511

Then, typing the command:
svytotal( enroll, dstrat)

we obtain:

Total SE

enroll 3687178 114642

7.4 Clustered Sampling

Here, we consider sampling 15 school districts and take all the schools in each
of these districts. The data frame is apiclus1: variable dnum identifies a school
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district, fpc is the number of schools in the stratum, and pw is the sampling
weights. The initial step is to define a survey design object containing the data
and metadata.

Cluster sample of school districts, using all schools within a district, using the
survey package, within Program R:
dclus1 = svydesign(id=∼dnum, weights=∼pw, data=apiclus1, fpc=∼fpc)
Notice that,

• dnum is a numeric identifier for school district;

• No stratification, so no strata = argument.

Then we type the command:
summary(dclus1)

to obtain:

1 - level Cluster Sampling design

With (15) clusters.

svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.02954 0.02954 0.02954 0.02954 0.02954 0.02954

Population size (PSUs): 757

Data variables:

[1] "cds" "stype" "name" "sname" "snum" "dname"

[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"

...

7.5 Two-Stage Sampling

Now, we consider a two-stage cluster-sampling design in which 40 school districts
are sampled and then up to five schools from each district. Using the survey

package, within Program R:
dclus2 = svydesign(id=∼dnum+snum, fpc=∼fpc1+fpc2, data=apiclus2)

Notice that,

• dnum identifies school district;

• snum identifies school;

• fpc1 is the number of school districts in frame;

• fpc2 is the number of schools in the district;

• Weights are computed from fpc1 and fpc2
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Then, we type the command:
summary(dclus2)

to obtain:

2 - level Cluster Sampling design

With (40, 126) clusters.

svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2)

Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.003669 0.037740 0.052840 0.042390 0.052840 0.052840

Population size (PSUs): 757

Data variables:

[1] "cds" "stype" "name" "sname" "snum" "dname"

[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"

...

7.6 PPS Sampling

Probability-proportional-to-size (PPS) is a general term for unequal probabilty
sampling, because the most important application is sampling clusters propor-
tional to size. The Horvitz-Thompson estimator, HT , is computationally diffi-
cult (n×n matrices) and depends on the pairwise sampling probabilities, which
depend on the sizes of all clusters in the frame, not just those in the sample.
The survey package uses a simple approximation that reduces exactly to the
HT estimator for multistage stratified sampling and is accurate, more generally
in PPS sampling.

Notice that totals are positively correlated with cluster size, even when propor-
tions are negatively correlated.

7.6.1 PPS Sampling Example

Using the survey package, within program R, we type the commands:
plot(Bush∼Kerry,data=election,log="xy")
plot(I(Bush/votes)∼I(Kerry/votes), data=election)

dpps = svydesign(id=∼1, weights=∼wt, fpc=∼p, data=election pps, pps="brewer")

dppswr = svydesign(id=∼1, weights=∼wt, data=election pps)

svytotal(∼Bush+Kerry+Nader, dpps)

to obtain:

Total SE

Bush 64518472 2447629

Kerry 51202102 2450787

Nader 478530 102420
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Then, we type the command:
svytotal(∼Bush+Kerry+Nader, dppswr)

to obtain:

Total SE

Bush 64518472 2671455

Kerry 51202102 2679433

Nader 478530 105303

And the command:
colSums(election[,4:6])

to obtain:

Bush Kerry Nader

59645156 56149771 404178

7.7 Summary Statistics

The survey package functions: svymean(), svytotal(), svyratio(), svyvar(),
svyquantile() are used for pertinent summary statistics. All take a formula
and design object as arguments, return an object with coef, vcov, SE, cv meth-
ods.

Mean and total on factor variables give tables of cell means/totals. Mean and
total have deff argument for design effects and the returned object has a deff

method. Now, we type the command:
svymean(∼api00, dclus1, deff=TRUE)

to obtain:

Mean SE DEff

api00 644.169 23.542 9.3459

Then, we type the command:
svymean(∼factor(stype),dclus1)
to obtain:

Mean SE

factor(stype)E 0.786885 0.0463

factor(stype)H 0.076503 0.0268

factor(stype)M 0.136612 0.0296

And, we type the command:
svymean(∼interaction(stype, comp.imp), dclus1)

to obtain:
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mean SE

interaction(stype, comp.imp)E.No 0.174863 0.0260

interaction(stype, comp.imp)H.No 0.038251 0.0161

interaction(stype, comp.imp)M.No 0.060109 0.0246

interaction(stype, comp.imp)E.Yes 0.612022 0.0417

interaction(stype, comp.imp)H.Yes 0.038251 0.0161

interaction(stype, comp.imp)M.Yes 0.076503 0.0217

If we type the command:
svyvar(∼api00, dclus1)

we obtain:

Variance SE

api00 11183 1386.4

And, if we type the command:
svytotal(∼enroll, dclus1, deff=TRUE)

we obtain:

Total SE DEff

enroll 3404940 932235 31.311

By typing the commands:
mns = svymean(∼api00+api99,dclus1)
mns

we obtain the following:

Mean SE

api00 644.17 23.542

api99 606.98 24.225

7.8 Tables

The survey package has two main types of tables:

• Totals or proportions cross-classified by multiple factors;

• Arbitrary statistics in subgroups.

7.8.1 Computing Over Subgroups

Function svyby() computes a statistic for subgroups specified by a set of factor
variables. We type the command:
svyby(∼api99, ∼stype, dclus1, svymean)

to obtain:
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stype statistics.api99 se.api99

E E 607.7917 22.81660

H H 595.7143 41.76400

M M 608.6000 32.56064

Here: api99 is the variable to be analysed, stype is the subgroup variable,
dclus1 is the design object, and svymean is the statistic to compute.

If we type the command:
svyby(∼api99, ∼stype, dclus1, svyquantile, quantiles=0.5,ci=TRUE)

we obtain:

stype statistics.quantiles statistics.CIs se var

E E 615 525.6174, 674.1479 37.89113 1435.738

H H 593 428.4810, 701.0065 69.52309 4833.460

M M 611 527.5797, 675.2395 37.66903 1418.955

To obtain the following, we type the command:
svyby(∼api99, list(school.type=apiclus1$stype), dclus1, svymean)

school.type statistics.api99 se.api99

E E 607.7917 22.81660

H H 595.7143 41.76400

M M 608.6000 32.56064

Then, typing the command:
svyby(∼api99+api00, ∼stype, dclus1, svymean, deff=TRUE)

we obtain:

stype statistics.api99 statistics.api00 se.api99 se.api00

E E 607.7917 648.8681 22.81660 22.36241

H H 595.7143 618.5714 41.76400 38.02025

M M 608.6000 631.4400 32.56064 31.60947

DEff.api99 DEff.api00

E 5.895734 6.583674

H 2.211866 2.228259

M 2.226990 2.163900

stype sch.wide statistic.api99 statistic.api00

E.No E No 601.6667 596.3333

H.No H No 662.0000 659.3333

M.No M No 611.3750 606.3750

E.Yes E Yes 608.3485 653.6439

H.Yes H Yes 577.6364 607.4545

M.Yes M Yes 607.2941 643.2353
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7.9 Cross-Tabulations

Functions svyby() or svymean() and svytotal(), with interaction, will pro-
duce the numbers, but the formatting is not pretty. On the other hand, function
ftable() provides formatting. By typing the following commands:
d = svyby(∼api99 + api00, ∼stype + sch.wide, rclus1, svymean, keep.var=TRUE,

vartype=c("se","cvpct"))

round(ftable(d),1)

we obtain:

sch.wide No Yes

statistics.api99 statistics.api00 statistics.api99 statistics.api00

stype

E svymean 601.7 596.3 608.3 653.6

SE 70.0 64.5 23.7 22.4

cv% 11.6 10.8 3.9 3.4

H svymean 662.0 659.3 577.6 607.5

SE 40.9 37.8 57.4 54.0

cv% 6.2 5.7 9.9 8.9

M svymean 611.4 606.4 607.3 643.2

SE 48.2 48.3 49.5 49.3

cv% 7.9 8.0 8.2 7.7



Appendix A

Quick Introduction to R

An inference, if it is to have scientific value, must constitute a prediction
concerning future data. If the inference is to be made purely with the help
of the distribution theories of statistics, the experiments that constitute the
evidence for the inference must arise from a state of statistical control;
until that state is reached there is no universe, normal or otherwise, and
the statistician’s calculations by themselves are an illusion if not a delusion.
The fact is that when distribution theory is not applicable for lack of control,
any inference, statistical or otherwise, is little better than a conjecture. The
state of statistical control is therefore the goal of all experimentation.—W
Edwards Deming.a

aWA Shewhart (with the editorial assistance of W Edwards Deming); 1939. Statistical
Method: From the Viewpoint of Quality Control. Washington, DC: Graduate School,
USDA. Page iii.

A.1 Getting and Working with R

R is a program for statistical analysis and graphic presentation. It is open-
source and it is available to download, free of charge, from CRAN’s Website –
http://cran.r-project.org

R is command-driven: just type a command and press Enter, then it executes
the command and prints the result. Then, R waits for more input.

Some examples:
2 * 5 # multiplication

log(10) # natural logarithm

sqrt(357) # square root

x = rnorm(1000) # generate 1000 random numbers from a N(0,1) distribution

log( ), sqrt( ), and rnorm( ) are examples of functions. Function calls use
parentheses; for example:
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plot(x)

summary(x)

A.1.1 Some Restrictions

Variable names cannot start with a digit, names are Case-Sensitive. Some
common letters already reserved by R for special purposes, for example: c, q,
t, C, D, F, I, T

Elementary data types in R are all vectors. The c(...) construct is used to
create vectors:
age = c(60, 72, 57, 40, 25, 72)

age

Common arithmetic operations, including: +, −, ∗, /, ˆ, and mathematical
functions, e.g.: max( ), min( ), exp( ), log( ) work element-wise on vec-
tors; and produce another vector. Example:
experience = c(23.5, 25, 16.5, 9, 4.5, 30)

summary(age); summary(experience)

A.2 Graphics

The simplest way to produce R graphics output is to use the plot function. For
example, a scatter plot of age and experience:
plot(age, experience)

A histogram is obtained with:
hist(x)

And a box-plot is given by:
boxplot(x)

R has many graphic capabilities in one- two- and three-dimensions. You can
see a demonstration by typing
demo(graphics)

A.3 Getting Help

The command, help.start( ) starts a browser window with an HTML help
interface. One of the best ways to get started is using a manual for beginners
called An Introduction to R. You can find many references to R in CRAN’s
Contributed Documentation section. The documents are divided into those of
100 or more pages and others of less than 100 pages.

The command, help(topic) displays the help page for a particular topic or
function. Every R function has a help page. The following are equivalent:
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help(plot)

? plot

If you want to know about a specific subject, but do not know which particular
help page has the information, the command help.search( ) is very useful.
For example:
help.search("logarithm")

A.4 R Packages

Program R makes use of a system of packages. A package is a collection of
routines with a common theme. And a library is a collection of packages. Some
packages are already loaded when R starts up; other packages need be loaded
using function library( ).

Many packages are available from CRAN’s website, visiting
http://cran.us.r-project.org/src/contrib/PACKAGES.html

At any point, a list of currently loaded packages can be listed using function:
search( )

Other packages can be loaded by the user. We will be interested in the sampling
and survey packages. Once installed, these can be loaded using:
library(sampling)

And
library(survey)

New packages can be downloaded and installed using function install.packages().
For example, to install the UsingR package, one can type:
install.packages("UsingR")

library(help = UsingR)

The last command gives a list of all help pages in said package.

A.5 Data Types

Program R works with four data types. These are:

vector A set of units of the same mode in a specified order. We have already
seen several examples of vectors.

matrix A two-dimensional array of elements of the same mode. For example,
a correlation matrix.

factor A vector of categorical data. For example, sex = c("F", "M", "F",

"F", "M")
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data frame Two-dimensional array whose columns may represent data of dif-
ferent modes. We will work with many examples of data frames in our
course.

list A set of components that can be any other object type. Many of R’s output
are in a form of a list.
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Accessing Data using R

Use of data requires also understanding of the distinction between enumer-
ative studies and analytic problems. An enumerative study produces infor-
mation about a frame. The theory of sampling and design of experiments
are enumerative studies. Our Census is an enumerative study . . . The in-
terpretation of a test or experiment is something else. It is prediction that
a specific change in a process or procedure will be a wise choice, or that
no change would be better. Either way the choice is prediction. This is
known as an analytic problem, or a problem of inference, prediction. Test
of significance, t-test, chi-square, are useless as inference—i.e., useless for
aid in prediction. Test of hypothesis has been for half a century a bristling
obstruction to understanding statistical inference.a

a W Edwards Deming; 1993. The New Economics: For Industry, Government,
Education. Cambridge, MA: MIT CAES. Page 103 et seq.

B.1 Reading Text File

Suppose that we want to read data from external text files. Also, we may want
to read data from statistical programs like: Stata, SPSS, SAS, Minitab, and
others. We might want to read data from other formats, like for example, to
read data from Excel.

In general, R is not well suited to manipulate large-scale data. Therefore, we
can read text (ASCII) files, which is the easiest form to import into R. Function,
scan( ) is used to read real (numeric) data. And read.table( ) is used to
read data frames.
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B.1.1 Using read.table( )

Suppose data set (matrix) called ”numbers.txt” is in our working directory. To
read said file type:
mat.1 = read.table("numbers.txt")

mat.1

fix(mat.1)

Now, suppose data frame called ”savings&loan.txt” is in our working directory.
Also, suppose it has column headers. To read said data frame type:
df.1 = read.table("savings&loan.txt", header = TRUE)

df.1

fix(df.1)

B.2 Text Files Export

Normally, a text file will be convenient to export. A common task is to write a
matrix or data frame to a file, which is done by the functions write.table( )

and write( ).

Function write( ) writes out a matrix or vector in a specified number of
columns (and transposes a matrix). And function write.table( ) is conve-
niently used to write out a data frame with row and column labels.

B.3 Data From Other Statistics Programs

Package foreign provides import facilities from programs: Stata, Minitab,
SPSS, SAS, and others. Suppose for example, a Stata data set ”Apparatus
Quality.dta” is in our working directory. To read said data, type the following
commands:
library(foreign)

apparatus = read.dta("Apparatus Quality.dta")

str(apparatus)

save(apparatus, file="apparatus.RData")

B.3.1 Other Statistics Programs

For other statistics programs, ask for help:
? read.mtp # MTB Worksheet

? read.spss # SPSS Data File

? read.ssd # SAS Dataset

? read.epiinfo # Epi-Info Data

? read.systat # Systat Data

? read.dbf # DBF File
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B.4 Reading Excel Spreadsheets

To access Excel files, we have several options. With Excel data in tab-delimited
or comma-separated format, use read.delim( )

or read.csv( ), to import it into R. Another possibility is that you can export
to a DIF file and read it using read.DIF( ).

We can copy-and-paste between the display of a spreadsheet in such a program
and R, then use read.table( ). For Windows, the package xlsReadWrite has
a function read.xls( ) to read .xls files.

Example: Suppose data set "Salaries.xls" is in our working directory. To
access it, type the following commands:
library(xlsReadWrite)

salaries = read.xls("Salaries.xls")

str(salaries)

save(salaries, file="salaries.RData")
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Appendix C

Review of Basic Probability

What is consumer research? I have mentioned several times the need for
statistical surveys for consumer research . . . As I said earlier, the terms
“good quality” and “quality control” have no meaning except with reference
to the consumer’s needs . . . The main use of consumer research is to feed
consumer reactions back into the design of the product . . . Consumer re-
search takes the pulse of the consumer’s reactions and demands, and seek
explanations for the findings . . . Real consumer research, geared to design
and production, is an indispensable modern tool for modern problems.a

a W Edwards Deming; 1950. Elementary Principles of The Statistical Control of
Quality. Tokio: Japanese Union of Scientists and Engineers. Page 7.

C.1 Types of Probability

Classical Event’s A probability is the ratio of the number of favorable outcomes
M and all possible outcomes N in an experiment.

Pr(A) =
M

N
(C.1)

Empirical Event’s A probability is the proportion of times that the event oc-
curs, if the same experiment is repeated many times.

• Suppose that the experiment is repeated N times, and you observe that
event A occurred M < N times.

• Then,

Pr(A) = lim
N→∞

M

N
(C.2)
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Subjective It is an individual’s degree of belief on the occurrence of an event.

Examples of classical probability — games of chance: urns, cards, dice, roulletes

Examples of empirical probability:

1. Buffon: N = 4, 040 Coin tosses, M = 2,048 Heads, then Pr(H) = 0.505

2. K Pearson: N = 12, 000 Coin tosses, M = 6,019 Heads, then Pr(H) =
0.502

3. K Pearson: N = 24, 000 Coin tosses, M = 12,012 Heads, then Pr(H) =
0.501

4. Coin toss simulation using R is easy!
# Simulation of 50,000 tosses

x = c(0,1); y=sample(x, 50000, replace = T)

pr.H = sum(y)/50000; pr.H

Examples of subjective probability:

1. What is the probability for you of getting A in Economics?

2. What is the probability of life in Mars?

3. What is the probability that hypothesis H is true?

C.2 Probability Rules

Sample space (S) – includes all possible outcomes of interest

Null event (φ) – empty; contains no outcomes

Pr(S) = 1 and Pr(φ) = 0.

If A & B are two events in S:

0 ≤ Pr(A) ≤ 1 and 0 ≤ Pr(B) ≤ 1.

Complementary event (A′) – non-occurrence of event A

Pr(A′) = 1− Pr(A). (C.3)

Mutually exclusive events – If events A & B cannot occur simultaneously

Pr(A ∪B) = Pr(A) + Pr(B). (C.4)

Otherwise:
Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B). (C.5)
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C.3 Conditional Probability

We want the probability of event A, given that event B has occurred. By
definition, in symbols:

Pr(A |B) ≡ Pr(A ∩B)÷ Pr(B). (C.6)

Similarly:

Pr(B |A) ≡ Pr(A ∩B)÷ Pr(A). (C.7)

Therefore:

Pr(A ∩B) = Pr(A) · Pr(B |A)

= Pr(B) · Pr(A |B). (C.8)

C.4 Probability Table

A probability table contains both joint and marginal probabilities. It looks as
follows:

Outcome B B′ Marginal
A Pr(A ∩B) Pr(A ∩B′) Pr(A)
A′ Pr(A′ ∩B) Pr(A′ ∩B′) Pr(A′)

Marginal Pr(B) Pr(B′) 1.00

C.4.1 Probability Table Example

As an example, we classify people according to academic degree and position as
follows:

Outcome Mgt Mgt’ Marginal
BBA 0.12 0.58 0.70
BBA’ 0.08 0.22 0.30

Marginal 0.20 0.80 1.00

C.5 Bayes’ Rule

Total Probability – Suppose that event B occurs only if event A or event A′

has occurred, i.e.:

B ∈ A ∪A′ = S.

Then,

B = (A ∩B) ∪ (A′ ∩B) .
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Therefore,

Pr(B) = Pr (A ∩B) + Pr (A′ ∩B)

= Pr(A) · Pr(B |A) + Pr(A′) · Pr(B |A′). (C.9)

This is called the marginal or total probability of event B

Thomas Bayes (1763) wanted to know the inverse probability of event A, given
that B occurred. Based on Equation (C.9) above, by conditional probability:

Pr(A |B) = Pr(A ∩B)÷ Pr(B)

= Pr(A) · Pr(B |A)÷ Pr(B)

=
Pr(A) · Pr(B |A)

Pr(A) · Pr(B |A) + Pr(A′) · Pr(B |A′).
(C.10)

And this is known as Bayes’ Rule of Inverse Probability.

C.5.1 Bayes’ Rule Example

Suppose that your firm adopts a drug testing program to all employees. We
know that laboratory testing is not perfect. Imagine that:

• If an employee uses drug, the test indicates positive with 90% probability;

• If an employee does not use drug, the test indicates positive with 5%
probability;

• Based on past history, 4% of selected employees use drugs;

• A randomly selected employee was tested and got a positive result;

• After test result, what is the probability that he uses drugs?

In tabular form, the probabilities that he uses drugs or not, before and after
getting a positive test, are computed in the following table:

Event Pr(:) Pr(+| :) Prod. Pr(: |+)
Use 0.04 0.90 0.036 0.43

No Use 0.96 0.05 0.048 0.57
Total 1.00 xxx 0.084 1.00
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